Skip to main content
Log in

Troglitazone, a PPAR-γ agonist, decreases LTC4 concentration in mononuclear cells in patients with asthma

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Asthma is an inflammatory disorder with multiple mediators involved in the inflammatory response. Despite several attempts, no new anti-inflammatory drugs have been registered for asthma treatment for several years. However, thiazolidinediones, peroxisome proliferator-activated receptor agonists, have demonstrated some anti-inflammatory properties in various experimental settings. The aim of this study was to assess the influence of troglitazone on LTC4 and 15-HETE concentrations. It also evaluates TNF-induced eotaxin synthesis in peripheral blood mononuclear cells from 14 patients with mild asthma and 13 healthy controls.

Methods

PBMCs were isolated from the whole blood of the asthmatics and healthy subjects and pretreated with 0.1, 1 or 10 μM of Troglitazone. The cells were then exposed to 10−6 M calcium jonophore or 10 ng/ml TNF. The production and release of LTC4, 15-HETE and eotaxin were then assessed.

Results

Troglitazone caused a dose-dependent inhibition in LTC4 synthesis in both asthmatics and healthy subjects. Troglitazone did not influence 15-HETE or eotaxin production in either asthmatic patients or in healthy individuals.

Conclusion

Due to its inhibition of LTC4 synthesis, troglitazone therapy is an interesting potential therapeutic approach in asthma and other LTC4 related inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990;347(6294):645–50.

    Article  CAS  PubMed  Google Scholar 

  2. Margolis RN, Christakos S. The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation. An update. Ann N Y Acad Sci 2010;1192:208–14.

    Article  CAS  PubMed  Google Scholar 

  3. Cha BS, Ciaraldi TP, Carter L, Nikoulina SE, Mudaliar S, Mukherjee R, et al. Peroxisome proliferator-activated receptor (PPAR) gamma and retinoid X receptor (RXR) agonists have complementary effects on glucose and lipid metabolism in human skeletal muscle. Diabetologia 2001;44(4):444–52.

    Article  CAS  PubMed  Google Scholar 

  4. Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 2004;45(12):2161–73.

    Article  CAS  PubMed  Google Scholar 

  5. Freake HC. A genetic mutation in PPAR gamma is associated with enhanced fat cell differentiation: implications for human obesity. Nutr Rev 1999;57(5 Pt 1):154–6.

    CAS  PubMed  Google Scholar 

  6. Zhang R, Zheng F. PPAR-gamma and aging: one link through klotho? Kidney Int 2008;74(6):702–4.

    Article  CAS  PubMed  Google Scholar 

  7. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 1994;135(2):798–800.

    Article  CAS  PubMed  Google Scholar 

  8. Fujii D, Yoshida K, Tanabe K, Hihara J, Toge T. The ligands of peroxisome proliferator-activated receptor (PPAR) gamma inhibit growth of human esophageal carcinoma cells through induction of apoptosis and cell cycle arrest. Anticancer Res 2004;24(3a):1409–16.

    CAS  PubMed  Google Scholar 

  9. Yuan ZY, Liu Y, Zhang JJ, Kishimoto C, Wang YN, Ma AQ, et al. PPAR-gamma ligands inhibit the expression of inflammatory cytokines and attenuate autoimmune myocarditis. Chin Med J (Engl) 2004;117(8):1253–5.

    CAS  Google Scholar 

  10. Ji JD, Cheon H, Jun JB, Choi SJ, Kim YR, Lee YH, et al. Effects of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) on the expression of inflammatory cytokines and apoptosis induction in rheumatoid synovial fibroblasts and monocytes. J Autoimmun 2001;17(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  11. Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998;95(13):7614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor gamma-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 2000;20(13):4699–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdelrahman M, Sivarajah A, Thiemermann C. Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovasc Res 2005;65(4):772–81.

    Article  CAS  PubMed  Google Scholar 

  14. Feng J, Han J, Pearce SF, Silverstein RL, Gotto AM, Hajjar DP, et al. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J Lipid Res 2000;41(5):688–96.

    CAS  PubMed  Google Scholar 

  15. Mueller C, Weaver V, Vanden Heuvel JP, August A, Cantorna MT. Peroxisome proliferator-activated receptor gamma ligands attenuate immunological symptoms of experimental allergic asthma. Arch Biochem Biophys 2003;418(2):186–96.

    Article  CAS  PubMed  Google Scholar 

  16. Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000;164(3):1364–71.

    Article  CAS  PubMed  Google Scholar 

  17. Harris SG, Phipps RP. The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis. Eur J Immunol 2001;31(4):1098–105.

    Article  CAS  PubMed  Google Scholar 

  18. Padilla J, Kaur K, Harris SG, Phipps RP. PPAR-gamma-mediated regulation of normal and malignant B lineage cells. Ann N Y Acad Sci 2000;905:97–109.

    Article  CAS  PubMed  Google Scholar 

  19. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995;270(22):12953–6.

    Article  CAS  PubMed  Google Scholar 

  20. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998;47(4):507–14.

    Article  CAS  PubMed  Google Scholar 

  21. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, et al. International union of pharmacology: LXI. Eroxisome proliferator-activated receptors. Pharmacol Rev 2006;58(4):726–41.

    Article  CAS  PubMed  Google Scholar 

  22. Della-Morte D, Palmirotta R, Rehni AK, Pastore D, Capuani B, Pacifici F, et al. Pharmacogenomics and pharmacogenetics of thiazolidinediones: role in diabetes and cardiovascular risk factors. Pharmacogenomics 2014;15(16):2063–82.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe I, Tomita A, Shimizu M, Sugawara M, Yasumo H, Koishi R, et al. A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther 2003;73(5):435–55.

    Article  CAS  PubMed  Google Scholar 

  24. Oniki K, Ueda K, Hori M, Mihara S, Marubayashi T, Nakagawa K. Glutathione-S-transferase (GST) M1 null genotype and combined GSTM1 and GSTT1 null genotypes as a risk factor for alcoholic mild liver dysfunction. Clin Pharmacol Ther 2007;81(5):634–5.

    Article  CAS  PubMed  Google Scholar 

  25. Tolman KG. Thiazolidinedione hepatotoxicity: a class effect? Int J Clin Pract Suppl 2000;113:29–34.

    CAS  Google Scholar 

  26. Page C, O’Shaughnessy B, Barnes P. Pathogenesis of COPD and asthma. Handb Exp Pharmacol 2017;237:1–21.

    CAS  PubMed  Google Scholar 

  27. Guan Y, Jin X, Liu X, Huang Y, Wang M, Li X. Uncovering potential key genes associated with the pathogenesis of asthma: a microarray analysis of asthma-relevant tissues. Allergol Immunopathol (Madr) 2017;45(2):152–9.

    Article  CAS  Google Scholar 

  28. Pothen JJ, Poynter ME, Bates JH. A computational model of unresolved allergic inflammation in chronic asthma. Am J Physiol Lung Cell Mol Physiol 2015;308(4):L384–90.

    Article  CAS  PubMed  Google Scholar 

  29. Lawani MA, Zongo F, Breton MC, Moisan J, Gregoire JP, Dorval E, et al. Factors associated with adherence to asthma treatment with inhaled corticosteroids: a cross-sectional exploratory study. J Asthma 2017;0.

  30. Axelsson M, Ekerljung L, Lundback B, Lotvall J. Personality and unachieved treatment goals related to poor adherence to asthma medication in a newly developed adherence questionnaire—a population-based study. Multidiscip Respir Med 2016;11:42.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boonpiyathad S, Sangasapaviliya A. Refractory asthma treatment is complicated by tracheobronchomalacia: case reports and review of the literature. Case Rep Med 2013;2013:735058.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rinne ST, Feemster LC, Collins BF, Au DH, Perkins M, Bryson CL, et al. Thiazolidinediones and the risk of asthma exacerbation among patients with diabetes: a cohort study. Allergy Asthma Clin Immunol 2014;10(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhu M, Flynt L, Ghosh S, Mellema M, Banerjee A, Williams E, et al. Anti-inflammatory effects of thiazolidinediones in human airway smooth muscle cells. Am J Respir Cell Mol Biol 2011;45(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yamashita M. PPARalpha/gamma-independent effects of PPARalpha/gamma ligands on cysteinyl leukotriene production in mast cells. PPAR Res 2008;2008:293538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sokolowska M, Wodz-Naskiewicz K, Cieslak M, Seta K, Bednarek AK, Pawliczak R. Variable expression of cysteinyl leukotriene type I receptor splice variants in asthmatic females with different promoter haplotypes. BMC Immunol 2009;10:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Heise CE, O’Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000;275(39):30531–6.

    Article  CAS  PubMed  Google Scholar 

  37. Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999;399(6738):789–93.

    Article  CAS  PubMed  Google Scholar 

  38. Dahlen B, Nizankowska E, Szczeklik A, Zetterstrom O, Bochenek G, Kumlin M, et al. Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 1998;157(4 Pt 1):1187–94.

    Article  CAS  PubMed  Google Scholar 

  39. Yamashita M, Kushihara M, Hirasawa N, Takasaki W, Takahagi H, Takayanagi M, et al. Inhibition by troglitazone of the antigen-induced production of leukotrienes in immunoglobulin E-sensitized RBL-2H3 cells. Br J Pharmacol 2000;129(2):367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy 2012;42(9):1313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okunishi K, Peters-Golden M. Leukotrienes and airway inflammation. Biochim Biophys Acta 2011;1810(11):1096–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu J, Qiu YS, Figueroa DJ, Bandi V, Galczenski H, Hamada K, et al. Localization and upregulation of cysteinyl leukotriene-1 receptor in asthmatic bronchial mucosa. Am J Respir Cell Mol Biol 2005;33(6):531–40.

    Article  CAS  PubMed  Google Scholar 

  43. Wenzel SE. The role of leukotrienes in asthma. Prostaglandins Leukot Essent Fatty Acids 2003;69(2–3):145–55.

    Article  CAS  PubMed  Google Scholar 

  44. Singh RK, Tandon R, Dastidar SG, Ray A. A review on leukotrienes and their receptors with reference to asthma. J Asthma 2013;50(9):922–31.

    Article  CAS  PubMed  Google Scholar 

  45. Pniewska E, Sokolowska M, Kuprys-Lipinska I, Kacprzak D, Kuna P, Pawliczak R. Exacerbating factors induce different gene expression profiles in peripheral blood mononuclear cells from asthmatics, patients with chronic obstructive pulmonary disease and healthy subjects. Int Arch Allergy Immunol 2014;165(4):229–43.

    Article  CAS  PubMed  Google Scholar 

  46. Aldonyte R, Jansson L, Piitulainen E, Janciauskiene S. Circulating monocytes from healthy individuals and COPD patients. Respir Res 2003;4:11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Doherty TA, Soroosh P, Broide DH, Croft M. CD4+ cells are required for chronic eosinophilic lung inflammation but not airway remodeling. Am J Physiol Lung Cell Mol Physiol 2009;296(2):L229–35.

    Article  CAS  PubMed  Google Scholar 

  48. Belvisi MG, Hele DJ, Birrell MA. Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol 2006;533(1–3):101–9.

    Article  CAS  PubMed  Google Scholar 

  49. von Knethen A, Brune B. PPARgamma-an important regulator of monocyte/macrophage function. Arch Immunol Ther Exp (Warsz) 2003;51(4):219–26.

    Google Scholar 

  50. Patel HJ, Belvisi MG, Bishop-Bailey D, Yacoub MH, Mitchell JA. Activation of peroxisome proliferator-activated receptors in human airway smooth muscle cells has a superior anti-inflammatory profile to corticosteroids: relevance for chronic obstructive pulmonary disease therapy. J Immunol 2003;170(5):2663–9.

    Article  CAS  PubMed  Google Scholar 

  51. Serhan CN, Devchand PR. Novel antiinflammatory targets for asthma. A role for PPARgamma? Am J Respir Cell Mol Biol 2001;24(6):658–61.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao Y, Huang Y, He J, Li C, Deng W, Ran X, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates airway inflammation by inhibiting the proliferation of effector T cells in a murine model of neutrophilic asthma. Immunol Lett 2014;157(1–2):9–15.

    Article  CAS  PubMed  Google Scholar 

  53. Park YS, Lillehoj EP, Kato K, Park CS, Kim KC. PPARgamma inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2012;302(7):L679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Olsson S, Cagnoni F, Dignetti P, Melioli G, Canonica GW. Low concentrations of cytokines produced by allergen-stimulated peripheral blood mononuclear cells have potent effects on nasal polyp-derived fibroblasts. Clin Exp Immunol 2003;132(2):254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong CK, Zhang JP, Ip WK, Lam CW. Activation of p38 mitogen-activated protein kinase and nuclear factor-kappaB in tumour necrosis factor-induced eotaxin release of human eosinophils. Clin Exp Immunol 2002;128(3):483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Desmet C, Warzee B, Gosset P, Melotte D, Rongvaux A, Gillet L, et al. Pro-inflammatory properties for thiazolidinediones. Biochem Pharmacol 2005;69(2):255–65.

    Article  CAS  PubMed  Google Scholar 

  57. Nie M, Corbett L, Knox AJ, Pang L. Differential regulation of chemokine expression by peroxisome proliferator-activated receptor gamma agonists: interactions with glucocorticoids and beta2-agonists. J Biol Chem 2005;280(4):2550–61.

    Article  CAS  PubMed  Google Scholar 

  58. Ban K, Sprunt JM, Martin S, Yang P, Kozar RA. Glutamine activates peroxisome proliferator-activated receptor-gamma in intestinal epithelial cells via 15-S-HETE and 13-OXO-ODE: a novel mechanism. Am J Physiol Gastrointest Liver Physiol 2011;301(3):G547–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Subbarayan V, Xu XC, Kim J, Yang P, Hoque A, Sabichi AL, et al. Inverse relationship between 15-lipoxygenase-2 and PPAR-gamma gene expression in normal epithelia compared with tumor epithelia. Neoplasia 2005;7(3):280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kowalski ML, Ptasinska A, Bienkiewicz B, Pawliczak R, DuBuske L. Differential effects of aspirin and misoprostol on 15-hydroxyeicosatetraenoic acid generation by leukocytes from aspirin-sensitive asthmatic patients. J Allergy Clin Immunol 2003;112(3):505–12.

    Article  CAS  PubMed  Google Scholar 

  61. Liebhart J, Medrala W, Gladysz U, Barg W, Liebhart E, Dobek R, et al. Production of leukotriene C4 by peripheral blood leukocytes stimulated with anti-fcepsilonRI antibody, PMA, and fMLP does not correlate with irreversible airway obstruction in asthmatics. J Investig Allergol Clin Immunol 2007;17(1):1–5.

    CAS  PubMed  Google Scholar 

  62. Dworski R, Fitzgerald GA, Oates JA, Sheller JR. Effect of oral prednisone on airway inflammatory mediators in atopic asthma. Am J Respir Crit Care Med 1994;149(4 Pt 1):953–9.

    Article  CAS  PubMed  Google Scholar 

  63. Bush A. Montelukast in paediatric asthma: where we are now and what still needs to be done? Paediatr Respir Rev 2015;16(2):97–100.

    PubMed  Google Scholar 

  64. Filion KB, Joseph L, Boivin JF, Suissa S, Brophy JM. Thiazolidinediones and the risk of incident congestive heart failure among patients with type 2 diabetes mellitus. Pharmacoepidemiol Drug Saf 2011;20(8):785–96.

    Article  CAS  PubMed  Google Scholar 

  65. Kassahun K, Pearson PG, Tang W, McIntosh I, Leung K, Elmore C, et al. Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem Res Toxicol 2001;14(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  66. Haskins JR, Rowse P, Rahbari R, de la Iglesia FA. Thiazolidinedione toxicity to isolated hepatocytes revealed by coherent multiprobe fluorescence microscopy and correlated with multiparameter flow cytometry of peripheral leukocytes. Arch Toxicol 2001;75(7):425–38.

    Article  CAS  PubMed  Google Scholar 

  67. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, et al. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diab Care 2006;29(8):1963–72.

    Article  Google Scholar 

  68. Asada K, Sasaki S, Suda T, Chida K, Nakamura H. Antiinflammatory roles of peroxisome proliferator-activated receptor gamma in human alveolar macrophages. Am J Respir Crit Care Med 2004;169(2):195–200.

    Article  PubMed  Google Scholar 

  69. Sokolowska M, Borowiec M, Ptasinska A, Cieslak M, Shelhamer JH, Kowalski ML, et al. 85-kDa cytosolic phospholipase A2 group IValpha gene promoter polymorphisms in patients with severe asthma: a gene expression and case-control study. Clin Exp Immunol 2007;150(1):124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Pawliczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luczak, E., Wieczfinska, J., Sokolowska, M. et al. Troglitazone, a PPAR-γ agonist, decreases LTC4 concentration in mononuclear cells in patients with asthma. Pharmacol. Rep 69, 1315–1321 (2017). https://doi.org/10.1016/j.pharep.2017.05.006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.05.006

Keywords

Navigation