Skip to main content
Log in

High-dose testosterone enanthate supplementation boosts oxidative stress, but exerts little effect on the antioxidant barrier in sedentary adolescent male rat liver

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Anabolic-androgenic steroids abuse is on the rise among adolescent boys and young men, mostly in those seeking a ‘shortcut’ to an improved body image. This approach is associated with the risk of severe adverse health effects, some of which involve the liver and are linked to hepatic oxidative stress. Testosterone and its esters is a cornerstone of most anabolic-androgenic steroid stacking protocols.

Methods

We assessed and compared several hepatotoxicity and liver oxidative stress indices, as well as the contents of some components of the hepatic antioxidant barrier between sedentary adolescent male rats given a 6-week course of weekly im testosterone enanthate (TE, 8 or 80 mg/kgBW /week) or vehicle (sesame oil) injections. Blood and livers for the assessments were harvested seven days after the last injection.

Results

TE supplementation dose-dependently elevated blood testosterone and significantly increased the liver content of thiobarbituric acid-reactive substances. Only the high-dose TE supplementation significantly slowed down body weight gain, reduced the liver weight/body weight ratio, increased liver heat shock protein 70/72 content and elevated blood enzyme markers of liver stress. There was no significant difference in reduced glutathione and α- or γ-tocopherol content between the TE-treated and control rats. Of the antioxidant enzymes studied (superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase), only the dismutase activity was significantly while moderately elevated and only by the high-dose TE supplementation.

Conclusion

(Sub)chronic supplementation of sedentary adolescent male rats with high TE doses does not exert a lasting major effect on the liver antioxidant barrier and redox homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAS:

anabolic-androgenic steroids

ALP:

alkaline phosphatase

ALT:

alanine aminotransferase

ANOVA:

analysis of variance

AST:

aspartate aminotransferase

BW:

body weight

CAT:

catalase

CTRL:

controls

GGT:

γ-glutamyltransferase

GPx:

glutathione peroxidase

GR:

glutathione reductase

GSH:

reduced glutathione

Hsp70/72:

70/72 kDa heat shock protein

LW:

liver weight

MDA:

malondialdehyde

R S :

Spearman’s rank correlation coefficient

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid-reactive substances

Tc:

core body temperature

TE:

testosterone enanthate

TT:

total testosterone

References

  1. Kicman AT. Pharmacology of anabolic steroids. Br J Pharmacol 2008; 154:502–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kanayama G, Pope Jr. HG. Illicit use of androgens and other hormones: recent advances. Curr Opin Endocrinol Diabetes Obes 2012;19:211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerr JM, Congeni JA. Anabolic-androgenic steroids: use and abuse in pediatric patients. Pediatr Clin North Am 2007;54:771–85.

    Article  PubMed  Google Scholar 

  4. Lumia AR, McGinnis MY. Impact of anabolic androgenic steroids on adolescent males. Physiol Behav 2010;100:199–204.

    Article  CAS  PubMed  Google Scholar 

  5. Casavant MJ, Blake K, Griffith J, Yates A, Copley LM. Consequences of use of anabolic androgenic steroids. Pediatr Clin North Am 2007;54:677–90.

    Article  PubMed  Google Scholar 

  6. Sánchez-Osorio M, Duarte-Rojo A, Martínez-Benítez B, Torre A, Uribe M. Anabolic-androgenic steroids and liver injury. Liver Int 2008;28:278–82.

    Article  PubMed  Google Scholar 

  7. Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 2009;16:3041–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saborido A, Molano F, Megias A. Effect of training and anabolic-androgenic steroids on drug metabolism in rat liver. Med Sci Sports Exerc 1993;25:815–22.

    Article  CAS  PubMed  Google Scholar 

  9. Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol 2008;29:169–81.

    Article  CAS  PubMed  Google Scholar 

  10. Cerretani D, Neri M, Cantatore S, Ciallella C, Riezzo I, Turillazzi E, et al. Looking for organ damages due to anabolic-androgenic steroids (AAS): is oxidative stress the culprit? Mini-Rev Org Chem 2013;10:393–9.

    Article  CAS  Google Scholar 

  11. Bond P, Llewellyn W, Van Mol P. Anabolic androgenic steroid-induced hepatotoxicity. Med Hypotheses 2016;93:150–3.

    Article  CAS  PubMed  Google Scholar 

  12. Comporti M, Arezzini B, Signorini C, Vecchio D, Gardi C. Oxidative stress, isoprostanes and hepatic fibrosis. Histol Histopathol 2009;24:893–900.

    CAS  PubMed  Google Scholar 

  13. Guengerich FP. Cytochrome P450 and chemical toxicology. Chem Res Toxicol 2008;21:70–83.

    Article  CAS  PubMed  Google Scholar 

  14. Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008;295:C849–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Mitochondria and vascular pathology. Pharmacol Rep 2009;61:123–30.

    Article  PubMed  Google Scholar 

  16. Frankenfeld SP, Oliveira LP, Ortenzi VH, Rego-Monteiro IC, Chaves EA, Ferreira AC, et al. The anabolic androgenic steroid nandrolone decanoate disrupts redox homeostasis in liver, heart and kidney of male Wistar rats. PLoS ONE 2014;9:e102699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol 2015;4:180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pey A, Saborido A, Blazquez I, Delgado J, Megias A. Effects of prolonged stanozolol treatment on antioxidant enzyme activities, oxidative stress markers, and heat shock protein HSP72 levels in rat liver. J Steroid Biochem Mol Biol 2003;87:269–77.

    Article  CAS  PubMed  Google Scholar 

  19. Stárka L, Dusková M, Hill M. Dihydrotestosterone and testosterone throughout the life span of Czech men. Neuro-Endocrinol Lett 2008;29:201–4.

    PubMed  Google Scholar 

  20. Welder AA, Robertson JW, Melchert RB. Toxic effects of anabolic-androgenic steroids in primary rat hepatic cultures. J Pharmacol Toxicol Methods 1995;33:187–95.

    Article  CAS  PubMed  Google Scholar 

  21. Aebi H. Catalase in vitro. Microsomal lipid peroxidation. Methods Enzymol 1984;105:121–5.

    CAS  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sobczak A, Skop B, Kula B. Simultaneous determination of serum retinol and α-and γ-tocopherol levels in type II diabetic patients using HPLC with fluorescence detection. J Chromatogr B: Biomed Sci Appl 1999;730:265–71.

    Article  CAS  Google Scholar 

  24. Hoffman JR, Ratamess NA. Medical issues associated with anabolic steroid use: are they exaggerated? J Sports Sci Med 2006;5:182–93.

    PubMed  PubMed Central  Google Scholar 

  25. van Amsterdam J, Opperhuizen A, Hartgens F. Adverse health effects of anabolic-androgenic steroids. Regul Toxicol Pharmacol 2010;57:117–23.

    Article  PubMed  CAS  Google Scholar 

  26. Bhatia V, Bhardwaj P, Elikkottil J, Batra J, Saraya A. A 7-day profile of oxidative stress and antioxidant status in patients with acute liver failure. Hepatol Int 2008;2:465–70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015;16:26087–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arauz J, Ramos-Tovar E, Muriel P. Redox state and methods to evaluate oxidative stress in liver damage: from bench to bedside. Ann Hepatol 2016;15:160–73.

    CAS  PubMed  Google Scholar 

  29. Zaugg M, Jamali NZ, Lucchinetti E, Xu W, Alam M, Shafiq SA, et al. Anabolic-androgenic steroids induce apoptotic cell death in adult rat ventricular myocytes. J Cell Physiol 2001;87:90–5.

    Article  Google Scholar 

  30. Melchert RB, Welder AA. Cardiovascular effects of androgenic-anabolic steroids. Med Sci Sports Exerc 1995;27:1252–62.

    Article  CAS  PubMed  Google Scholar 

  31. Pelletier G. Localization of androgen and estrogen receptors in rat and primate tissues. Histol Histopathol 2000;15:1261–70.

    CAS  PubMed  Google Scholar 

  32. Laure P. Doping: epidemiological studies. Presse Med 2000;29:1365–72.

    CAS  PubMed  Google Scholar 

  33. De Pergola G. The adipose tissue metabolism: role of testosterone and dehydroepiandrosterone. Int J Obes Relat Metab Disord 2000;24(Suppl 2): S59–63.

    Article  PubMed  Google Scholar 

  34. Enevoldsen LH, Stallknecht B, Langfort J, Petersen LN, Holm C, Plough T, et al. The effect of exercise training on hormone-sensitive lipase in rat intra-abdominal adipose tissue and muscle. J Physiol 2001;536:871–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Langfort J, Jagsz S, Dobrzyn P, Brzezinska Z, Klapcinska B, Galbo H, et al. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle. Biochem Biophys Res Commun 2010;399:670–6.

    Article  CAS  PubMed  Google Scholar 

  36. Hoyos CM, Yee BJ, Phillips CL, Machan EA, Grunstein RR, Liu PY. Body compositional and cardiometabolic effects of testosterone therapy in obese men with severe obstructive sleep apnoea: a randomised placebo-controlled trial. Eur J Endocrinol 2012;167:531–41.

    Article  CAS  PubMed  Google Scholar 

  37. Kelly DM, Akhtar S, Sellers DJ, Muraleedharan V, Channer KS, Jones TH. Testosterone differentially regulates targets of lipid and glucose metabolism in liver, muscle and adipose tissues of the testicular feminised mouse. Endocrine 2016;54:504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dickerman RD, Pertusi R, Zachariah NY, Dufour DR, McConathy WJ. Anabolic steroid-induced hepatotoxicity: is it overstated? Clin J Sport Med 1999;9: 34–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008;245:194–205.

    Article  CAS  PubMed  Google Scholar 

  40. Lindros KO, Penttilä KE, Gaasbeek Janzen JW, Moorman AF, Speisky H, Israel Y. The γ-glutamyltransferase/glutamine synthetase activity ratio. A powerful marker for the acinar origin of hepatocytes. J Hepatol 1989;8:338–43.

    Article  CAS  PubMed  Google Scholar 

  41. Urhausen A, Torsten A, Wilfried K. Reversibility of the effects on blood cells, lipids, liver function and hormones in former anabolic-androgenic steroid abusers. J Steroid Biochem Mol Biol 2003;84:369–75.

    Article  CAS  PubMed  Google Scholar 

  42. Gragera R, Saborido A, Molano F, Jiménez L, Muñiz E, Megías A. Ultrastructural changes induced by anabolic steroids in liver of trained rats. Histol Histopathol 1993;8:449–55.

    CAS  PubMed  Google Scholar 

  43. Zhang H, Forman HJ. Redox regulation of γ-glutamyl transpeptidase. Am J Respir Cell Mol Biol 2009;41:509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paolicchi A, Tongiani R, Tonarelli P, Comporti M, Pompella A. Gamma-glutamyl transpeptidase-dependent lipid peroxidation in isolated hepatocytes and HepG2 hepatoma cells. Free Radical Biol Med 1997;22:853–60.

    Article  CAS  Google Scholar 

  45. Lee DH, Blomhoff R, Jacobs Jr. DR. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radical Res 2004;18:535–9.

    Article  CAS  Google Scholar 

  46. Sadowska-Krępa E, Klapcińska B, Jagsz S, Sobczak A, Chrapusta SJ, Chalimoniuk M, et al. High-dose testosterone propionate treatment reverses the effects of endurance training on myocardial antioxidant defenses in adolescent male rats. Cardiovasc Toxicol 2011;11:118–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Leo MA, Rosman AS, Lieber CS. Differential depletion of carotenoids and tocopherol in liver disease. Hepatology 1993; 17:977–86.

    CAS  PubMed  Google Scholar 

  48. Sadowska-Krepa E, Klapcinska B, Jagsz S, Chalimoniuk M, Chrapusta SJ, Wanke A, et al. Diverging oxidative damage and heat shock protein 72 responses to endurance training and chronic testosterone propionate treatment in three striated muscle types of adolescent male rats. J Physiol Pharmacol 2013;64:639–47.

    CAS  PubMed  Google Scholar 

  49. Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol 2014;30:323–33.

    Article  CAS  Google Scholar 

  50. Morton JP, Kayani AC, McArdle A, Drust B. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 2009;39:643–62.

    Article  PubMed  Google Scholar 

  51. Jarmuszkiewicz W, Woyda-Ploszczyca A, Koziel A, Majerczak J, Zoladz JA. Temperature controls oxidative phosphorylation and reactive species production through uncoupling in rat skeletal muscle mitochondria. Free Radical Biol Med 2015;83:12–20.

    Article  CAS  Google Scholar 

  52. Dufour S, Rousse N, Canioni P, Diolez P. Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J 1996;314:743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Kłapcińska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadowska-Krępa, E., Kłapcińska, B., Jagsz, S. et al. High-dose testosterone enanthate supplementation boosts oxidative stress, but exerts little effect on the antioxidant barrier in sedentary adolescent male rat liver. Pharmacol. Rep 69, 673–678 (2017). https://doi.org/10.1016/j.pharep.2017.02.023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.02.023

Keywords

Navigation