Skip to main content

Advertisement

Log in

The application of skin metabolomics in the context of transdermal drug delivery

  • Review Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Metabolomics is a powerful emerging tool for the identification of biomarkers and the exploration of metabolic pathways in a high-throughput manner. As an administration site for percutaneous absorption, the skin has a variety of metabolic enzymes, except other than hepar. However, technologies to fully detect dermal metabolites remain lacking. Skin metabolomics studies have mainly focused on the regulation of dermal metabolites by drugs or on the metabolism of drugs themselves. Skin metabolomics techniques include collection and preparation of skin samples, data collection, data processing and analysis. Furthermore, studying dermal metabolic effects via metabolomics can provide novel explanations for the pathogenesis of some dermatoses and unique insights for designing targeted prodrugs, promoting drug absorption and controlling drug concentration. This paper reviews current progress in the field of skin metabolomics, with a specific focus on dermal drug delivery systems and dermatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ji Y, Guo S, Yang Y. Research progress of metabolomics strategies. J Anhui Agri Sci 2015;25(48):21–3.

    Google Scholar 

  2. Jacques C, Perdu E, Jamin EL, Cravedi JP, Mavon A, Duplan H, et al. Effect of skin metabolism on dermal delivery of testosterone: qualitative assessment using a new short-term skin model. Skin Pharmacol Physiol 2014;27(4):188–200.

    Article  CAS  PubMed  Google Scholar 

  3. Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med 2002;6(2): 189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oesch F, Fabian E, Oesch-Bartlomowicz B, Werner C, Landsiedel R. Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab Rev 2007;39(4):659–98.

    Article  CAS  PubMed  Google Scholar 

  5. Svensson CK. Biotransformation of drugs in human skin. Drug Metab Dispos 2009;37(2):247–53.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Liu W, He C. The foundation of contemporary dermatology. Beijing: People’s Medical Publishing House; 2010.

    Google Scholar 

  7. Manevski N, Swart P, Balavenkatraman KK, Bertschi B, Camenisch G, Kretz O, et al. Phase II metabolism in human skin: skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Drug Metab Dispos 2015;43(1):126–39.

    Article  CAS  PubMed  Google Scholar 

  8. Wu J, Fiehn O, Armstrong AW. Metabolomic analysis using porcine skin: a pilot study of analytical techniques. Dermatol Online J 201420(6).

  9. Paliwal S, Hwang BH, Tsai KY, Mitragotri S. Diagnostic opportunities based on skin biomarkers. Eur J Pharm Sci 2013;50(5):546–56.

    Article  CAS  PubMed  Google Scholar 

  10. Hu J-H, Zhu Q-G, Li J. Pharmacology of the skin. Beijing: Chemical Industry Press; 2008.

    Google Scholar 

  11. Jacques C, Perdu E, Dorio C, Bacqueville D, Mavon A, Zalko D. Percutaneous absorption and metabolism of [14C]-ethoxycoumarin in a pig ear skin model. Toxicol in Vitro 2010;24(5):1426–34.

    Article  CAS  PubMed  Google Scholar 

  12. Hu J-H, Zhu Q-G, Shen Q. Establishment and application of in situ perfused pig ear model for percutaneous absorption. Yao Xue Xue Bao 2003;38(10):783–6.

    CAS  PubMed  Google Scholar 

  13. Yu M, Zhang S, Zhu L, Wen N, Li Z. LC-MS/MS Determination of a natureal novel tyrosinase inhibitor UP302 in rat skin homogenate and its application to evaluate skin absorption amount and skin metabolic stability. Chin Pharm Aff 2011;25(11):1089–93.

    CAS  Google Scholar 

  14. Huang Y, Xu F, Zhang W, Wang J, Zhang J. Progress for pharmacometabolomics and its applications. J China Pharm Univ 2013;44(2):105–12.

    CAS  Google Scholar 

  15. Jiang R, Cudjoe E, Bojko B, Abaffy T, Pawliszyn J. A non-invasive method for in vivo skin volatile compounds sampling. Anal Chim Acta 2013;804:111–9.

    Article  CAS  PubMed  Google Scholar 

  16. Natsch A, Derrer S, Flachsmann F, Schmid J. A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem Biodivers 2006;3(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  17. Sisalli S, Adao A, Lebel M, Le Fur I, Sandra P. Sorptive tape extraction — a novel sampling method for the in vivo study of skin. LC GC Eur 2006;19(1):33–9.

    CAS  Google Scholar 

  18. Mess A, Enthaler B, Fischer M, Rapp C, Pruns JK, Vietzke JP. A novel sampling method for identification of endogenous skin surface compounds by use of DART-MS and MALDI-MS. Talanta 2013;103:398–402.

    Article  CAS  PubMed  Google Scholar 

  19. Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res 2007;6(2):443–58.

    Article  CAS  PubMed  Google Scholar 

  20. Bingol K, Brueschweiler R. NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine. J Proteome Res 2015;14(6):2642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ketola RA, Mauriala T. Mass spectrometric tools for cell and tissue studies. Eur J Pharm Sci 2012;46(5):293–314.

    Article  CAS  PubMed  Google Scholar 

  22. Bingol K, Brueschweiler R. Multidimensional approaches to NMR-based metabolomics. Anal Chem 2014;86(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  23. Sjovall P, Greve TM, Clausen SK, Moller K, Eirefelt S, Johansson B, et al. Imaging of distribution of topically applied drug molecules in mouse skin by combination of time-of-flight secondary ion mass spectrometry and scanning electron microscopy. Anal Chem 2014;86(7):3443–52.

    Article  CAS  PubMed  Google Scholar 

  24. Cody RB, Laramee JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 2005;77(8):2297–302.

    Article  CAS  PubMed  Google Scholar 

  25. Martin HJ, Reynolds JC, Riazanskaia S, Thomas CL. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry. Analyst 2014;139(17):4279–86.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X. Research and application of metabolomic methodology based on different analytical methods. Lanzhou: Univ of Lanzhou; 2013.

    Google Scholar 

  27. Wilson ID, Plumb R, Granger J, Major H, Williams R, Lenz EM. HPLC-MS-based methods for the study of metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci 2005;817(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  28. Harker M, Carvell AM, Marti VP, Riazanskaia S, Kelso H, Taylor D, et al. Functional characterisation of a SNP in the ABCC11 allele — effects on axillary skin metabolism, odour generation and associated behaviours. J Dermatol Sci 2014;73(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  29. Gao H, Lin D. Applications of 1H nuclear magnetic resonance spectroscopy and nuclear magnetic resonance-based metabonomics in tumour studies. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2007;29(6):803–10.

    CAS  PubMed  Google Scholar 

  30. Wiklund Susanne, Johansson Erik, Sjostrom Lina, Mellerowicz Ewa J, Edlund Ulf, Shockcor John P, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 2008;80(1):115–22.

    Article  CAS  Google Scholar 

  31. Park HM, Moon E, Lee S, Kim SY, Do S-G, Kim J, et al. Topical application of baby- and adult-aloe on ultraviolet B irradiated mouse skin with metabolite profiling. Metabolomics 2015;11(5):1219–30.

    Article  CAS  Google Scholar 

  32. Trezzi JP, Vlassis N, Hiller K. The role of metabolomics in the study of cancer biomarkers and in the development of diagnostic tools. Adv Exp Med Biol 2015;867:41–57.

    Article  CAS  PubMed  Google Scholar 

  33. Mendrick DL, Schnackenberg L. Genomic and metabolomic advances in the identification of disease and adverse event biomarkers. Biomark Med 2009;3(5):605–15.

    Article  CAS  PubMed  Google Scholar 

  34. Crockford DJ, Holmes E, Lindon JC, Plumb RS, Zirah S, Bruce SJ, et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal Chem 2006;78(2):363–71.

    Article  CAS  PubMed  Google Scholar 

  35. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN — a metabolite mass spectral database. Ther Drug Monit 2005;27(6):747–51.

    Article  CAS  PubMed  Google Scholar 

  36. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0 — the human metabolome database in 2013. Nucleic Acids Res 2013;41(D1):D801–7.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang A, Sun H, Wang P, Han Y, Wang X. Recent and potential developments of biofluid analyses in metabolomics. J Proteom 2012;75(4):1079–88.

    Article  CAS  Google Scholar 

  38. Nicholson JK, Lindon JC. Systems biology — metabonomics. Nature 2008;455(7216): 1054–6.

    Article  CAS  PubMed  Google Scholar 

  39. Sitter B, Johnsson MK, Halgunset J, Bathen TF. Metabolic changes in psoriatic skin under topical corticosteroid treatment. BMC Dermatol 2013;13:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abaffy T, Moller MG, Riemer DD, Milikowski C, DeFazio RA. Comparative analysis of volatile metabolomics signals from melanoma and benign skin: a pilot study. Metabolomics 2013;9(5):998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abaffy T, Duncan R, Riemer DD, Tietje O, Elgart G, Milikowski C, et al. Differential volatile signatures from skin, naevi and melanoma: a novel approach to detect a pathological process. PLoS One 2010;5(11):e13813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paliwal S, Ogura M, Mitragotri S. One-step acquisition of functional biomolecules from tissues. Proc Natl Acad Sci U S A 2010;107(33):14627–32.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Papoiu ADP, Wang H, Nattkemper L, Tey HL, Ishiuji Y, Chan YH, et al. A study of serum concentrations and dermal levels of NGF in atopic dermatitis and healthy subjects. Neuropeptides 2011;45(6):417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leveque N, Robin S, Muret P, Mac-Mary S, Makki S, Humbert P. High iron and low ascorbic acid concentrations in the dermis of atopic dermatitis patients. Dermatology 2003;207(3):261–4.

    Article  CAS  PubMed  Google Scholar 

  45. Xie LY, Song CY, Lou YY, Xu Z, Zhang ML, Dong BJ, et al. Studies on metabolic characteristics and pathological mechanisms of diabetic ulcers by H-1 NMR-based metabonomics. Acta Chimi Sin 2011;69(19):2265–71.

    CAS  Google Scholar 

  46. Sood RF, Gu HW, Djukovic D, Deng LL, Ga M, Muffley LA, et al. Targeted metabolic profiling of wounds in diabetic and nondiabetic mice. Wound Repair Regen 2015;23(3):423–34.

    Article  PubMed  Google Scholar 

  47. Witte MB, Thornton FJ, Tantry U, Barbul A. L-arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways. Metabolism 2002;51(10):1269–73.

    Article  CAS  PubMed  Google Scholar 

  48. Dziadzio M, Usinger W, Leask A, Abraham D, Black CM, Denton C, et al. N-terminal connective tissue growth factor is a marker of the fibrotic phenotype in scleroderma. QJM 2005;98(7):485–92.

    Article  CAS  PubMed  Google Scholar 

  49. Randhawa M, Sangar V, Tucker-Samaras S, Southall M. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway. PLoS One 2014;9(3):1219–30.

    Article  CAS  Google Scholar 

  50. Murray J, Oquendo CE, Willis JH, Marusich MF, Capaldi RA. Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress. Adv Drug Del Rev 2008;60(13–14):1497–503.

    Article  CAS  Google Scholar 

  51. Pilkington SM, Rhodes LE, Al-Aasswad NMI, Massey KA, Nicolaou A. Impact of EPA ingestion on COX- and LOX-mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge — Report of a randomised controlled study in humans. Mol Nutr Food Res 2014;58(3):580–90.

    Article  CAS  PubMed  Google Scholar 

  52. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci Off J Eur Fed Pharm Sci 2001;14(2):101–14.

    CAS  Google Scholar 

  53. Verso Clinic. Injecting water retention membrane by hydrolifting is better than applying mask. China: Verso Clinic; 2015.

    Google Scholar 

  54. Bonifas J, Hennen J, Dierolf D, Kalmes M, Bloemeke B. Evaluation of cytochrome P450 1 (CYP1) and N-acetyltransferase 1 (NAT1) activities in HaCaT cells: implications for the development of in vitro techniques for predictive testing of contact sensitizers. Toxicol in Vitro: Int J Publ Assoc BIBRA 2010;24(3):973–80.

    Article  CAS  Google Scholar 

  55. Bhaiya P, Roychowdhury S, Vyas PM, Doll MA, Hein DW, Svensson CK. Bioactivation, protein haptenation, and toxicity of sulfamethoxazole and dapsone in normal human dermal fibroblasts. Toxicol Appl Pharmacol 2006;215(2):158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goebel C, Hewitt NJ, Kunze G, Wenker M, Hein DW, Beck H, et al. Skin metabolism of aminophenols: human keratinocytes as a suitable in vitro model to qualitatively predict the dermal transformation of 4-amino-2-hydroxytoluene in vivo. Toxicol Appl Pharmacol 2009;235(1): 114–23.

    Article  CAS  PubMed  Google Scholar 

  57. Vyas PM, Roychowdhury S, Koukouritaki SB, Hines RN, Krueger SK, Williams DE, et al. Enzyme-mediated protein haptenation of dapsone and sulfamethoxazole in human keratinocytes: II. Expression and role of flavin-containing monooxygenases and peroxidases. J Pharmacol Exp Ther 2006;319(1):497–505.

    Article  CAS  PubMed  Google Scholar 

  58. Heilmann S, Kuechler S, Schaefer-Korting M. Morphine metabolism in human skin microsomes. Skin Pharmacol Physiol 2012;25(6):319–22.

    Article  CAS  PubMed  Google Scholar 

  59. Kushida A, Hattori K, Yamaguchi N, Kobayashi T, Date A, Tamura H. Sulfation of estradiol in human epidermal keratinocyte. Biol Pharm Bull 2011;34(7): 1147–51.

    Article  CAS  PubMed  Google Scholar 

  60. Moeller R, Lichter J, Blomeke B. Impact of para-phenylenediamine on cyclooxygenases expression and prostaglandin formation in human immortalized keratinocytes (HaCaT). Toxicology 2008;249(2–3):167–75.

    Article  CAS  PubMed  Google Scholar 

  61. Baetz FM, Klipper W, Korting HC, Henkler F, Landsiedel R, Luch A, et al. Esterase activity in excised and reconstructed human skin — Biotransformation of prednicarbate and the model dye fluorescein diacetate. Eur J Pharm Biopharm 2013;84(2):374–85.

    Article  CAS  Google Scholar 

  62. Bell GH, Novak AJ, Griffin III WC, Patrick KS. Transdermal and oral dl-methylphenidate-ethanol interactions in C57BL/6J mice: transesterification to ethylphenidate and elevation of d-methylphenidate concentrations. J Pharm Sci 2011;100(7):2966–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Murakami I, Chaleckis R, Pluskal T, Ito K, Hori K, Ebe M, et al. Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin. PLoS One 2014;9(12):e115359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. D’Alvise J, Mortensen R, Hansen SH, Janfelt C. Detection of follicular transport of lidocaine and metabolism in adipose tissue in pig ear skin by DESI mass spectrometry imaging. Anal Bioanal Chem 2014;406(15):3735–42.

    Article  CAS  PubMed  Google Scholar 

  65. Lankheet NAG, Blank CU, Mallo H, Adriaansz S, Rosing H, Schellens JHM, et al. Determination of sunitinib and its active metabolite N-desethylsunitinib in sweat of a patient. J Anal Toxicology 2011;35(8):558–65.

    Article  CAS  Google Scholar 

  66. Trauer S, Patzelt A, Otberg N, Knorr F, Rozycki C, Balizs G, et al. Permeation of topically applied caffeine through human skin — a comparison of in vivo and in vitro data. Br J Clin Pharmacol 2009;68(2):181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zouboulis CC, Degitz K. Androgen action on human skin — from basic research to clinical significance. Exp Dermatol 2004;13(13 Suppl. 4):5–10.

    Article  CAS  PubMed  Google Scholar 

  68. Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. Follicular targeting-a promising tool in selective dermatotherapy. J Investig Dermatol Symp Proc 2005;10(3):252–5.

    Article  PubMed  Google Scholar 

  69. Vogt A, Mahe B, Costagliola D, Bonduelle O, Hadam S, Schaefer G, et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T Cell immune responses in humans. J Immunol 2008;180(3):1482–9.

    Article  CAS  PubMed  Google Scholar 

  70. Yarian CS, Sohal RS. In the aging housefly aconitase is the only citric acid cycle enzyme to decline significantly. J Bioenerg Biomembr 2005;37(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  71. Moon E, Park HM, Lee CH, Do SG, Park JM, Han NY, et al. Dihydrolipoyl dehydrogenase as a potential UVB target in skin epidermis; using an integrated approach of label-free quantitative proteomics and targeted metabolite analysis. J Proteom 2015;117:70–85.

    Article  CAS  Google Scholar 

  72. Jung ES, Park HM, Lee KE, Shin JH, Mun S, Kim JK, et al. A metabolomics approach shows that catechin-enriched green tea attenuates ultraviolet B-induced skin metabolite alterations in mice. Metabolomics 2015;11(4):861–71.

    Article  CAS  Google Scholar 

  73. Leite-Silva VR, Le Lamer M, Sanchez WY, Liu DC, Sanchez WH, Morrow I, et al. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm 2013;84(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  74. Arakaki AK, Skolnick J, McDonald JF. Marker metabolites can be therapeutic targets as well. Nature 2008;456(7221):443.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, W., Liang, Y. et al. The application of skin metabolomics in the context of transdermal drug delivery. Pharmacol. Rep 69, 252–259 (2017). https://doi.org/10.1016/j.pharep.2016.10.011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.10.011

Keywords

Navigation