Skip to main content
Log in

Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases

  • Review Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter reducing neural excitability in the mammalian central nervous system (CNS) with three subclasses of receptors. Several conventional drugs and compounds modulate the GABAergic system, demonstrating different pharmacological effects. In this review, interactions of natural terpenoids with the GABAergic system are highlighted with relation to disorders like anxiety, insomnia, convulsion, pain, and cognitive deficits. Terpenoids with various structures affect the function of the GABAergic system via dissimilar mechanisms. Most of the discussed compounds interact with GABA receptors, but especially with the GABAA subtype. This may be due to the fact that researchers tend to assess the interaction of compounds using GABAA receptors. However, bilobalide, a sesquiterpene, showed anticonvulsant properties through the activation of glutamic acid decarboxylase (GAD) enzyme, which is a key enzyme in biosynthesis of GABA. Therefore, further studies evaluating and comparing terpenoids of different classes and their interaction with the GABA system, along with their pharmacokinetic properties, could be worthwhile in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braat S, Kooy RF. The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron 2015;86:1119–30.

    Article  CAS  PubMed  Google Scholar 

  2. McCarson KE, Enna S. GABA pharmacology: the search for analgesics. Neurochem Res 2014;39:1948–63.

    Article  CAS  PubMed  Google Scholar 

  3. Rae MG, Hilton J, Sharkey J. Putative TRP channel antagonists, SKF 96365, flufenamic acid and 2-APB, are non-competitive antagonists at recombinant human α1β2γ2 GABAA receptors. Neurochem Int 2012;60:543–54.

    Article  CAS  PubMed  Google Scholar 

  4. Malin Abdullah J, Zhang J. The GABA a receptor subunits heterologously expressed in Xenopus oocytes. J Med Chem 2013;13:744–8.

    Google Scholar 

  5. Kalueff AV, Nutt DJ. Role of GABA in anxiety and depression. J Depress Anxiety 2007;24:495–517.

    Article  CAS  Google Scholar 

  6. Egebjerg J, Schousboe A, Krogsgaard-Larsen P. Glutamate and GABA receptors and transporters: structure, function and pharmacology. CRC Press; 2001.

  7. Harvey PD, Bowie CR. Cognitive enhancement in schizophrenia: pharmacological and cognitive remediation approaches. Psychiatr Clin N Am 2012;35:683–98.

    Article  Google Scholar 

  8. Rissman RA, Mobley WC. Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease. J Neurochem 2011;117:613–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gibbs ME, Johnston GA. Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 2005;131:567–76.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 2007;10:411–3.

    Article  CAS  PubMed  Google Scholar 

  11. Johnston G, Chebib M, Duke R, Fernandez S, Hanrahan J, Hinton T, et al. Herbal products and GABA receptors. Encycl Neurosci 2009;4:1095–101.

    Article  Google Scholar 

  12. Evans WC. Trease and Evans’ pharmacognosy. Elsevier Health Sciences; 2009.

  13. Manayi A. Anticancer terpenoids. In: Saeidnia S, editor. New approaches to natural anticancer drugs. Springer International Publishing; 2015.

  14. Granger RE, Campbell EL, Johnston GA. (+)- And (−)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABA(A) receptors. Biochem Pharmacol 2005;69:1101–11.

    Article  CAS  PubMed  Google Scholar 

  15. Quintans-Junior LJ, Guimaraes AG, Araujo BE, Oliveira GF, Santana MT, Moreira FV, et al. Carvacrol (−)-borneol and citral reduce convulsant activity in rodents. Afr J Biotechnol 2013;9:6566–72.

    Google Scholar 

  16. Guimaraes A, Scotti L, Scotti M, Mendonça Júnior F, Melo N, Alves R, et al. Carvacrol reduces cancer pain by GABAergic system. FASEB J 2015;29.

  17. Guimaraes AG, Scotti L, Scotti MT, Mendonca Junior FJ, Melo NS, Alves RS, et al. Evidence for the involvement of descending pain-inhibitory mechanisms in the attenuation of cancer pain by carvacrol aided through a docking study. Life Sci 2014;116:8–15.

    Article  CAS  PubMed  Google Scholar 

  18. Melo FH, Venancio ET, de Sousa DP, de Franca Fonteles MM, de Vasconcelos SM, Viana GS, et al. Anxiolytic-like effect of carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol 2010;24:437–43.

    Article  CAS  PubMed  Google Scholar 

  19. Reiner GN, Labuckas DO, Garcia DA. Lipophilicity of some GABAergic phenols and related compounds determined by HPLC and partition coefficients in different systems. J Pharm Biomed Anal 2009;49:686–91.

    Article  CAS  PubMed  Google Scholar 

  20. Serafim AP, Felicio LF. Dopaminergic modulation of grooming behavior in virgin and pregnant rats. Braz J Med Biol Res 2001;34:1465–70.

    Article  CAS  PubMed  Google Scholar 

  21. Pires LF, Costa LM, Silva OA, de Almeida AA, Cerqueira GS, de Sousa DP, et al. Anxiolytic-like effects of carvacryl acetate, a derivative of carvacrol, in mice. Pharmacol Biochem Behav 2013;112:42–8.

    Article  CAS  PubMed  Google Scholar 

  22. de Sousa DP, Gonçalves JCR, Quintans-Júnior L, Cruz JS, Araújo DAM, de Almeida RN. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci Lett 2006;401:231–5.

    Article  PubMed  CAS  Google Scholar 

  23. Manayi A, Saeidnia S, Gohari AR, Abdollahi M. Methods for the discovery of new anti-aging products — targeted approaches. Expert Opin Drug Discov 2014;9:383–405.

    Article  CAS  PubMed  Google Scholar 

  24. Galati E, Miceli N, Galluzzo M, Taviano M, Tzakou O. Neuropharmacological effects of epinepetalactone from Nepeta sibthorpii behavioral and anticonvulsant activity. Pharm Biol 2004;42:391–5.

    Article  CAS  Google Scholar 

  25. Rajeswara Rao B, Kaul P, Syamasundar K, Ramesh S. Comparative composition of decanted and recovered essential oils of Eucalyptus citriodora hook. Flavour Fragr J 2003;18:133–5.

    Article  CAS  Google Scholar 

  26. Paik S-Y, Koh K-H, Beak S-M, Paek S-H, Kim J-A. The essential oils from Zanthoxylum schinifolium pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol Pharm Bull 2005;28:802–7.

    Article  CAS  PubMed  Google Scholar 

  27. Silva MIG, de Aquino Neto MR, Neto PFT, Moura BA, do Amaral JF, de Sousa DP, et al. Central nervous system activity of acute administration of isopulegol in mice. Pharmacol Biochem Behav 2007;88:141–7.

    Article  CAS  PubMed  Google Scholar 

  28. Sousa DPD, Raphael E, Brocksom U, Brocksom TJ. Sedative effect of monoterpene alcohols in mice: a preliminary screening. Z Naturforsch C 2007;62:563–6.

    Article  PubMed  Google Scholar 

  29. Silva MIG, Silva MAG, de Aquino Neto MR, Moura BA, de Sousa HL, de Lavor EPH, et al. Effects of isopulegol on pentylenetetrazol-induced convulsions in mice: possible involvement of GABAergic system and antioxidant activity. Fitoterapia 2009;80:506–13.

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira A, Almeida J, Freitas R, Nascimento V, Aguiar L, Júnior H, et al. Effects of levetiracetam in lipid peroxidation level, nitrite-nitrate formation and antioxidant enzymatic activity in mice brain after pilocarpine-induced seizures. Cell Mol Neurobiol 2007;27:395–406.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou W, Yoshioka M, Yokogoshi H. Sub-chronic effects of s-limonene on brain neurotransmitter levels and behavior of rats. J Nutr Sci Vitaminol 2009;55: 367–73.

    Article  CAS  PubMed  Google Scholar 

  32. Fukumoto S, Morishita A, Furutachi K, Terashima T, Nakayama T, Yokogoshi H. Effect of flavour components in lemon essential oil on physical or psychological stress. Stress Health 2008;24:3–12.

    Article  Google Scholar 

  33. Zhang XB, Jiang P, Gong N, Hu XL, Fei D, Xiong ZQ, et al. A-type GABA receptor as a central target of TRPM8 agonist menthol. PLoS ONE 2008;3:e3386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Watt EE, Betts BA, Kotey FO, Humbert DJ, Griffith TN, Kelly EW, et al. Menthol shares general anesthetic activity and sites of action on the GABA(A) receptor with the intravenous agent, propofol. Eur J Pharmacol 2008;590:120–6.

    Article  CAS  PubMed  Google Scholar 

  35. Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(a) receptors in hippocampal neurons. Mol Pharmacol 2001;59:814–24.

    Article  CAS  PubMed  Google Scholar 

  36. Corvalan NA, Zygadlo JA, Garcia DA. Stereo-selective activity of menthol on GABA(A) receptor. Chirality 2009;21:525–30.

    Article  CAS  PubMed  Google Scholar 

  37. Czyzewska MM, Mozrzymas JW. Monoterpene alpha-thujone exerts a differential inhibitory action on GABA(A) receptors implicated in phasic and tonic GABAergic inhibition. Eur J Pharmacol 2013;702:38–43.

    Article  CAS  PubMed  Google Scholar 

  38. Szczot M, Czyzewska MM, Appendino G, Mozrzymas JW. Modulation of GABAergic synaptic currents and current responses by α-thujone and dihydroumbellulone. J Nat Prod 2012;75:622–9.

    Article  CAS  PubMed  Google Scholar 

  39. Rivera EM, Cid MP, Zunino P, Baiardi G, Salvatierra NA. Central alpha- and betathujone: similar anxiogenic-like effects and differential modulation on GABAA receptors in neonatal chicks. Brain Res 2014;1555:28–35.

    Article  CAS  PubMed  Google Scholar 

  40. Chebib M, Hanrahan JR, Mewett KN, Duke RK, Johnston GAR. Ionotropic GABA receptors as therapeutic targets for memory and sleep disorders. Annu Rep Med Chem 2004;13–23.

  41. Garcia DA, Vendrell I, Galofre M, Sunol C. GABA released from cultured cortical neurons influences the modulation of t-[(35)S]butylbicyclophosphorothionate binding at the GABAA receptor effects of thymol. Eur J Pharmacol 2008;600:26–31.

    Article  CAS  PubMed  Google Scholar 

  42. Garcia DA, Bujons J, Vale C, Sunol C. Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons. Neuropharmacology 2006;50:25–35.

    Article  CAS  PubMed  Google Scholar 

  43. Parker DA, Marino V, Ong J. Pharmacological actions of thymol and an analogue at GABAB autoreceptors. Clin Exp Pharmacol Physiol 2014;41:623–7.

    CAS  PubMed  Google Scholar 

  44. Hosseinzadeh H, Parvardeh S. Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 2004;11:56–64.

    Article  CAS  PubMed  Google Scholar 

  45. Al-Majed AA, Al-Omar FA, Nagi MN. Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus. Eur J Pharmacol 2006;543:40–7.

    Article  CAS  PubMed  Google Scholar 

  46. Akhondian J, Kianifar H, Raoofziaee M, Moayedpour A, Toosi MB, Khajedaluee M. The effect of thymoquinone on intractable pediatric seizures (pilot study). Epilepsy Res 2011;93:39–43.

    Article  CAS  PubMed  Google Scholar 

  47. Ullah I, Badshah H, Naseer MI, Lee HY, Kim MO. Thymoquinone and vitamin c attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus. Neuromol Med 2015;17:35–46.

    Article  CAS  Google Scholar 

  48. Korshoej AR, Holm MM, Jensen K, Lambert JDC. Kinetic analysis of evoked IPSCs discloses mechanism of antagonism of synaptic GABAA receptors by picrotoxin. Br J Pharmacol 2010;159:636–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sedelnikova A, Erkkila BE, Harris H, Zakharkin SO, Weiss DS. Stoichiometry of a pore mutation that abolishes picrotoxin-mediated antagonism of the GABAA receptor. J Physiol 2006;577:569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carpenter TS, Lau EY, Lightstone FC. Identification of a possible secondary picrotoxin-binding site on the GABAA receptor. Chem Res Toxicol 2013;26: 1444–54.

    Article  CAS  PubMed  Google Scholar 

  51. Yoshiike Y, Kimura T, Yamashita S, Furudate H, Mizoroki T, Murayama M, et al. GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS ONE 2008;3:e3029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Trauner G, Khom S, Baburin I, Benedek B, Hering S, Kopp B. Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid. Planta Med 2008;74:19–24.

    Article  CAS  PubMed  Google Scholar 

  53. Khom S, Baburin I, Timin E, Hohaus A, Trauner G, Kopp B, et al. Valerenic acid potentiates and inhibits GABAA receptors: molecular mechanism and subunit specificity. Neuropharmacology 2007;53:178–87.

    Article  CAS  PubMed  Google Scholar 

  54. Benke D, Barberis A, Kopp S, Altmann K-H, Schubiger M, Vogt KE, et al. GABAA receptors as in vivo substrate for the anxiolytic action of valerenic acid, a major constituent of valerian root extracts. Neuropharmacology 2009;56:174–81.

    Article  CAS  PubMed  Google Scholar 

  55. Khom S, Strommer B, Ramharter J, Schwarz T, Schwarzer C, Erker T, et al. Valerenic acid derivatives as novel subunit-selective GABAA receptor ligands — in vitro and in vivo characterization. Br J Pharmacol 2010;161:65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sasaki K, Hatta S, Wada K, Ohshika H, Haga M. Bilobalide prevents reduction of γ-aminobutyric acid levels and glutamic acid decarboxylase activity induced by 4-o-methylpyridoxine in mouse hippocampus. Life Sci 2000;67:709–15.

    Article  CAS  PubMed  Google Scholar 

  57. Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GAR. Bilobalide, a sesquiterpene trilactone from Ginkgo biloba, is an antagonist at recombinant α1β2γ2l GABAA receptors. Eur J Pharmacol 2003;464:1–8.

    Article  CAS  PubMed  Google Scholar 

  58. Kiewert C, Kumar V, Hildmann O, Rueda M, Hartmann J, Naik RS, et al. Role of GABAergic antagonism in the neuroprotective effects of bilobalide. Brain Res 2007;1128:70–8.

    Article  CAS  PubMed  Google Scholar 

  59. Singhuber J, Baburin I, Kahlig H, Urban E, Kopp B, Hering S. GABAA receptor modulators from Chinese herbal medicines traditionally applied against insomnia and anxiety. Phytomedicine 2012;19:334–40.

    Article  CAS  PubMed  Google Scholar 

  60. Ivic L, Sands TTJ, Fishkin N, Nakanishi K, Kriegstein AR, Strømgaard K. Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABAA receptors. J Biol Chem 2003;278:49279–85.

    Article  CAS  PubMed  Google Scholar 

  61. Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GAR. Ginkgolides, diterpene trilactones of Ginkgo biloba, as antagonists at recombinant α1α2γ2l GABAA receptors. Eur J Pharmacol 2004;494:131–8.

    Article  CAS  PubMed  Google Scholar 

  62. Schramm A, Ebrahimi SN, Raith M, Zaugg J, Rueda DC, Hering S, et al. Phytochemical profiling of Curcuma kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABAA receptor modulators. Phytochemistry 2013;96:318–29.

    Article  CAS  PubMed  Google Scholar 

  63. Mitchell EA, Herd MB, Gunn BG, Lambert JJ, Belelli D. Neurosteroid modulation of GABAA receptors: molecular determinants and significance in health and disease. Neurochem Int 2008;52:588–95.

    Article  CAS  PubMed  Google Scholar 

  64. Lambert JJ, Cooper MA, Simmons RDJ, Weir CJ, Belelli D. Neurosteroids: endogenous allosteric modulators of GABAA receptors. Psychoneuroendocrinology 2009;34(Suppl. 1):S48–58.

    Article  CAS  PubMed  Google Scholar 

  65. Marx C, Lee J, Subramaniam M, Rapisarda A, Bautista DT, Chan E, et al. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology 2014;231:3647–62.

    Article  CAS  PubMed  Google Scholar 

  66. Irwin RW, Brinton RD. Allopregnanolone as regenerative therapeutic for Alzheimer’s disease: translational development and clinical promise. Prog Neurobiol 2014;113:40–55.

    Article  CAS  PubMed  Google Scholar 

  67. Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 2014;113:70–8.

    Article  CAS  PubMed  Google Scholar 

  68. Muceniece R, Saleniece K, Rumaks J, Krigere L, Dzirkale Z, Mezhapuke R, et al. Betulin binds to γ-aminobutyric acid receptors and exerts anticonvulsant action in mice. Pharmacol Biochem Behav 2008;90:712–6.

    Article  CAS  PubMed  Google Scholar 

  69. Chen CY-C. Chemoinformatics and pharmacoinformatics approach for exploring the GABA-A agonist from Chinese herb suanzaoren. J Taiwan Inst Chem Eng 2009;40:36–47.

    Article  CAS  Google Scholar 

  70. de Almeida RN, de Sousa DP, de Farias Nóbrega FF, de Sousa Claudino F, Araújo DAM, Leite JR, et al. Anticonvulsant effect of a natural compound α, β-epoxy-carvone and its action on the nerve excitability. Neurosci Lett 2008;443:51–5.

    Article  PubMed  CAS  Google Scholar 

  71. Hall AC, Turcotte CM, Betts BA, Yeung WY, Agyeman AS, Burk LA. Modulation of human GABAA and glycine receptor currents by menthol and related monoterpenoids. Eur J Pharmacol 2004;506:9–16.

    Article  CAS  PubMed  Google Scholar 

  72. Kessler A, Sahin-Nadeem H, Lummis SC, Weigel I, Pischetsrieder M, Buettner A, et al. GABA(A) receptor modulation by terpenoids from sideritis extracts. Mol Nutr Food Res 2014;58:851–62.

    Article  CAS  PubMed  Google Scholar 

  73. McKernan R, Rosahl T, Reynolds D, Sur C, Wafford K, Atack J, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor a1 subtype. Nat Neurosci 2000;3:587–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samineh Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manayi, A., Nabavi, S.M., Daglia, M. et al. Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases. Pharmacol. Rep 68, 671–679 (2016). https://doi.org/10.1016/j.pharep.2016.03.014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2016.03.014

Keywords

Navigation