Skip to main content
Log in

The effect of GABA transporter 1 (GAT1) inhibitor, tiagabine, on scopolamine-induced memory impairments in mice

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

GABAergic neurotransmission is involved in long-term potentiation, a neurophysiological basis for learning and memory. On the other hand, GABA-enhancing drugs may impair memory and learning in humans and animals. The present study aims at investigating the effect of GAT1 inhibitor tiagabine on memory and learning.

Methods

Albino Swiss (CD-1) and C57BL/6J mice were used in the passive avoidance (PA), Morris water maze (MWM) and radial arm water maze (RAWM) tasks. Scopolamine (1 mg/kg ip) was applied to induce cognitive deficits.

Results

In the retention trial of PA scopolamine reduced step-through latency as compared to vehicle-treated mice, and pretreatment with tiagabine did not have any influence on this effect. In MWM the results obtained for vehicle-treated mice, scopolamine-treated group and combined scopolamine + tiagabine-treated mice revealed variable learning abilities in these groups. Tiagabine did not impair learning in the acquisition trial. In RAWM on day 1 scopolamine-treated group made nearly two-fold more errors than vehicle-treated mice and mice that received combined scopolamine and tiagabine. Learning abilities in the latter group were similar to those of vehicle-treated mice in the corresponding trial block on day 1, except for the last trial block, during which tiagabine + scopolamine-injected mice made more errors than control mice and the scopolamine-treated group. In all groups a complete reversal of memory deficits was observed in the last trial block of day 2.

Conclusions

The lack of negative influence of tiagabine on cognitive functions in animals with scopolamine-induced memory impairments may be relevant for patients treated with this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNS:

central nervous system

GABA:

γ-aminobutyric acid

GAT:

GABA transporter

MWM:

Morris water maze

PA:

passive avoidance

RAWM:

radial arm water maze

References

  1. Schousboe A, Madsen KK, Barker-Haliski ML, White HS. The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters. Neurochem Res 2014;39(10):1980–7.

    Article  CAS  PubMed  Google Scholar 

  2. Conti F, Minelli A, Melone M. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 2004;45(3):136–212.

    Article  CAS  Google Scholar 

  3. Sałat K, Kulig K. GABA transporters as targets for new drugs. Future Med Chem 2011;3(2):211–22.

    Article  PubMed  Google Scholar 

  4. Schousboe A, Sarup A, Larsson OM, White HS. GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 2004;68(8):1557–63.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao X, Pabel J, Höfner GC, Wanner KT. Synthesis and biological evaluation of 4-hydroxy-4-(4-methoxyphenyl)-substituted proline and pyrrolidin-2-ylacetic acid derivativesas GABA uptake inhibitors. Bioorg Med Chem 2013;21(2):470– 84.

    Article  CAS  PubMed  Google Scholar 

  6. Dalby NO. Inhibition of gamma-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 2003;479(1– 3):127–37.

    Article  CAS  PubMed  Google Scholar 

  7. Sitka I, Allmendinger L, Fülep G, Höfner G, Wanner KT. Synthesis of N-substituted acyclic β-amino acids and their investigation as GABA uptake inhibitors. Eur J Med Chem 2013;65:487–9.

    Article  CAS  PubMed  Google Scholar 

  8. Quandt G, Höfner G, Pabel J, Dine J, Eder M, Wanner KT. First photoswitchable neurotransmitter transporter inhibitor: light-induced control of γ-aminobutyric acid transporter 1 (GAT1) activity in mouse brain. J Med Chem 2014;57(15):6809–21.

    Article  CAS  PubMed  Google Scholar 

  9. Sałat K, Kulig K, Sałat R, Filipek B, Malawska B. Analgesic and anticonvulsant activity of new derivatives of 2-substituted 4-hydroxybutanamides in mice. Pharmacol Rep 2012;64(1):102–12.

    Article  PubMed  Google Scholar 

  10. Sałat K, Więckowska A, Więckowski K, Höfner GC, Kamiński J, Wanner KT, et al. Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacol Rep 2012;64(4):817–33.

    Article  PubMed  Google Scholar 

  11. Kowalczyk P, Sałat K, Höfner GC, Guzior N, Filipek B, Wanner KT, et al. 2-Substituted 4-hydroxybutanamides as potential inhibitors of γ-aminobutyric acid transporters mGAT1-mGAT4: synthesis and biological evaluation. Bioorg Med Chem 2013;21(17):5154–67.

    Article  CAS  PubMed  Google Scholar 

  12. Kowalczyk P, Sałat K, Höfner GC, Mucha M, Rapacz A, Podkowa A, et al. Synthesis, biological evaluation and structure-activity relationship of new GABA uptake inhibitors, derivatives of 4-aminobutanamides. Eur J Med Chem 2014;83:256–73.

    Article  CAS  PubMed  Google Scholar 

  13. Kragholm B, Kvist T, Madsen KK, Jørgensen L, Vogensen SB, Schousboe A, et al. Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile. Biochem Pharmacol 2013;86(4):521–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pabel J, Faust M, Prehn C, Wörlein B, Allmendinger L, Höfner G, et al. Development of an (S)-1-{2-[tris(4-methoxyphenyl)methoxy]ethyl}piperidine-3-carboxylic acid [(S)-SNAP-5114] carba analogue inhibitor for murine γ-aminobutyric acid transporter type 4. ChemMedChem 2012;7(7):1245–55.

    Article  CAS  PubMed  Google Scholar 

  15. Sałat K, Podkowa A, Kowalczyk P, Kulig K, Dziubina A, Filipek B, et al. Anticonvulsant active inhibitor of GABA transporter subtype 1, tiagabine, with activity in mouse models of anxiety, pain and depression. Pharmacol Rep 2015;67:465–72.

    Article  PubMed  CAS  Google Scholar 

  16. Thoeringer CK, Erhardt A, Sillaber I, Mueller MB, Ohl F, Holsboer F, et al. Long-term anxiolytic and antidepressant-like behavioural effects of tiagabine, a selective GABA transporter-1 (GAT-1) inhibitor, coincide with a decrease in HPA system activity in C57BL/6 mice. J Psychopharmacol 2010;24(5):733–43.

    Article  CAS  PubMed  Google Scholar 

  17. Carpenter LL, Schecter JM, Tyrka AR, Mello AF, Mello MF, Haggarty R, et al. Open-label tiagabine monotherapy for major depressive disorder with anxiety. J Clin Psychiatry 2006;67(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  18. Novak V, Kanard R, Kissel JT, Mendell JR. Treatment of painful sensory neuropathy with tiagabine: a pilot study. Clin Auton Res 2001;11(6):357–66.

    Article  CAS  PubMed  Google Scholar 

  19. Pollack MH, Roy-Byrne PP, Van Ameringen M, Snyder H, Brown C, Ondrasik J, et al. The selective GABA reuptake inhibitor tiagabine for the treatment of generalized anxiety disorder: results of a placebo-controlled study. J Clin Psychiatry 2005;66(11):1401–8.

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz TL, Nihalani N. Tiagabine in anxiety disorders. Expert Opin Pharmacother 2006;7(14):1977–87.

    Article  CAS  PubMed  Google Scholar 

  21. Todorov AA, Kolchev CB, Todorov AB. Tiagabine and gabapentin for the management of chronic pain. Clin J Pain 2005;21(4):358–61.

    Article  PubMed  Google Scholar 

  22. Fritz N, Glogau S, Hoffmann J, Rademacher M, Elger CE, Helmstaedter C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav 2005;6(3):373–81.

    Article  CAS  PubMed  Google Scholar 

  23. Ortinski P, Meador KJ. Cognitive side effects of antiepileptic drugs. Epilepsy Behav 2004;5(Suppl. 1):60–5.

    Article  Google Scholar 

  24. Myhrer T. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Brain Res Rev 2003;41(2–3):268–87.

    Article  CAS  PubMed  Google Scholar 

  25. Castellano C, Zocchi A, Cabib S, Puglisi-Allegra S. Psychopharmacology of memory modulation: evidence for multiple interaction among neurotransmitters and hormones. Behav Brain Res 1996;77:1–21.

    Article  CAS  PubMed  Google Scholar 

  26. Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci 2002;22(13):5572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Cai Y, Liu G, Gong N, Liu Z, Xu T, et al. Enhanced learning and memory in GAT1 heterozygous mice. Acta Biochim Biophys Sin 2012;44(4):359–66.

    Article  CAS  PubMed  Google Scholar 

  28. Tellez R, Gómez-Víquez L, Meneses A. GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol Learn Mem 2012;97(2):189–201.

    Article  CAS  PubMed  Google Scholar 

  29. Kwan P, Brodie MJ. Neuropsychological effects of epilepsy and antiepileptic drugs. Lancet 2001;357(9251):216–22.

    Article  CAS  PubMed  Google Scholar 

  30. Schmitt U, Hiemke C. Tiagabine, a gamma-amino-butyric acid transporter inhibitor impairs spatial learning of rats in the Morris water-maze. Behav Brain Res 2002;133(2):391–4.

    Article  CAS  PubMed  Google Scholar 

  31. Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 2010;34(8):1307–50.

    Article  CAS  PubMed  Google Scholar 

  32. Patil SS, Sunyer B, Höger H, Lubec G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res 2009;198(1):58–68.

    Article  PubMed  Google Scholar 

  33. Park SJ, Kim DH, Jung JM, Kim JM, Cai M, Liu X, et al. The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur J Pharmacol 2012;676(1–3):64–70.

    Article  CAS  PubMed  Google Scholar 

  34. Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of Alzheimer’s disease: practical considerations and guidelines. Biochem Pharmacol 2014;88(4):450–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bialuk I, Dobosz K, Potrzebowski B, Winnicka MM. CP55,940 attenuates spatial memory retrieval in mice. Pharmacol Rep 2014;66(6):931–6.

    Article  CAS  PubMed  Google Scholar 

  36. Alamed J, Wilcock DM, Diamond DM, Gordon MN, Morgan D. Two-day radialarm water maze learning and memory task; robust resolution of amyloid-related memory deficits in transgenic mice. Nat Protoc 2006;1(4):1671–9.

    Article  CAS  PubMed  Google Scholar 

  37. Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, et al. Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflamm 2004;1(1):24.

    Article  CAS  Google Scholar 

  38. Sudduth TL, Weekman EM, Brothers HM, Braun K, Wilcock DM. β-Amyloid deposition is shifted to the vasculature and memory impairment is exacerbated when hyperhomocysteinemia is induced in APP/PS1 transgenic mice. Alzheimers Res Ther 2014;6(3):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang Y, Kan H, Yin Y, Wu W, Hu W, Wang M, et al. Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacol Biochem Behav 2014;120:73–81.

    Article  CAS  PubMed  Google Scholar 

  40. Sankar R, Holmes GL. Mechanisms of action for the commonly used antiepileptic drugs: relevance to antiepileptic drug-associated neurobehavioral adverse effects. J Child Neurol 2004;19(Suppl. 1):S6–14.

    Article  Google Scholar 

  41. Mula M, Trimble MR. Antiepileptic drug-induced cognitive adverse effects: potential mechanisms and contributing factors. CNS Drugs 2009;23(2):121– 37.

    Article  CAS  PubMed  Google Scholar 

  42. Ferreira DD, Stutz B, de Mello FG, Reis RA, Kubrusly RC. Caffeine potentiates the release of GABA mediated by NMDA receptor activation: Involvement of A1 adenosine receptors. Neuroscience 2014;281C:208–15.

    Article  CAS  Google Scholar 

  43. O’Connell AW, Fox GB, Kjøller C, Gallagher HC, Murphy KJ, Kelly J, et al. Anti-ischemic and cognition-enhancing properties of NNC-711, a gamma-aminobutyric acid reuptake inhibitor. Eur J Pharmacol 2001;424(1):37–44.

    Article  PubMed  Google Scholar 

  44. Gong N, Li Y, Cai GQ, Niu RF, Fang Q, Wu K, et al. GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation. J Neurosci 2009;29(50):15836–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu JH, Ma YH, Jiang J, Yang N, Duan SH, Jiang ZH, et al. Cognitive impairment in mice over-expressing gamma-aminobutyric acid transporter 1 (GAT1). Neuroreport 2004;15(1):9–12.

    Article  PubMed  Google Scholar 

  46. Gulcan HO, Unlu S, Esiringu I, Ercetin T, Sahin Y, Oz D, et al. Design, synthesis and biological evaluation of novel 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives as potential cholinesterase inhibitors. Bioorg Med Chem 2014;22(19):5141–54.

    Article  CAS  PubMed  Google Scholar 

  47. Paul CM, Magda G, Abel S. Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res 2009;203(2):151–64.

    Article  PubMed  Google Scholar 

  48. D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001;36(1):60–90.

    Article  PubMed  Google Scholar 

  49. Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci 2010;87(17–18):521–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga Sałat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sałat, K., Podkowa, A., Mogilski, S. et al. The effect of GABA transporter 1 (GAT1) inhibitor, tiagabine, on scopolamine-induced memory impairments in mice. Pharmacol. Rep 67, 1155–1162 (2015). https://doi.org/10.1016/j.pharep.2015.04.018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2015.04.018

Keywords

Navigation