Skip to main content

Advertisement

Log in

Differences in extracellular glutamate levels in striatum of rats with high and low exploratory activity

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Major inter-individual differences exist in vulnerability to anxiety and affective disorders, and the underlying neurobiology could help in understanding the predisposition to these disorders and treatment resistance. Recently the glutamatergic system has become a target in the development of novel antidepressants.

Methods

We compared extracellular glutamate levels in low (LE-) and high exploring (HE-) rats in hippocampus and striatum at baseline and after inhibition of re-uptake by perfusion with l-trans-pyrrolidine-2,4-dicarboxylate (PDC, 4 mM). Glutamate levels in microdialysates were measured by HPLC after derivatization.

Results

In the striatum, baseline glutamate levels in young adult LE-rats and HE-rats were not significantly different, but the response to uptake inhibition was: perfusion with PDC increased extracellular glutamate levels in both LE- and HE-rats, but to a significantly lower extent in LE-rats. Although the characteristic levels of exploration of LE- and HE-rats had previously been shown to be stable up to 8 months of age, we identified a subgroup of HE-rats whose exploration levels had drastically dropped by age of 11 months (formerly HE-rats, HEF), and analyzed their data separately. There were no differences in the PDC-evoked striatal glutamate release between the three groups; however, the baseline glutamate levels were higher in the HEF-subgroup compared to the HE- and LE-animals. In the CA1 area of hippocampus, there were no differences in extracellular glutamate levels between the LE- and HE-rats either at baseline or after inhibition of uptake.

Conclusion

These results suggest that inter-individual differences in exploratory behaviour may be related to striatal glutamatergic neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EAAT2:

excitatory amino acid (glutamate) transporter 2

5-HT:

serotonin

HEF:

formerly high explorer

HE:

high explorer

LE:

low explorer

PDC:

l-trans-pyrrolidine-2,4-dicarboxylic acid

References

  1. Hariri AR. The neurobiology of individual differences in complex behavioral traits. Annu Rev Neurosci 2009;32:225–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harro J. Inter-individual differences in neurobiology as vulnerability factors for affective disorders: implications for psychopharmacology. Pharmacol Ther 2010;125(3):402–22.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenzweig-Lipson S, Beyer CE, Hughes ZA, Khawaja X, Rajarao SJ, Malberg JE, et al. Differentiating antidepressants of the future: efficacy and safety. Pharmacol Ther 2007;113(1):134–53.

    Article  CAS  PubMed  Google Scholar 

  4. Racagni G, Popoli M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 2008;10(4):385–400.

    PubMed  PubMed Central  Google Scholar 

  5. Skolnick P, Popik P, Trullas R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 2009;30(11):563–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tokita K, Yamaji T, Hashimoto K. Roles of glutamate signaling in preclinical and/ or mechanistic models of depression. Pharmacol Biochem Behav 2012;100(4): 688–704.

    Article  CAS  PubMed  Google Scholar 

  7. Zarate C, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G. Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 2010;18(5):293–303.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Danbolt NC. Glutamate uptake. Prog Neurobiol 2001;65(1):1–105.

    Article  CAS  PubMed  Google Scholar 

  9. Bergles DE, Diamond JS, Jahr CE. Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 1999;9(3):293–8.

    Article  CAS  PubMed  Google Scholar 

  10. Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic cleft. Science 1992;258(5087):1498–501.

    Article  CAS  PubMed  Google Scholar 

  11. Neuhauss SCF, Rico EP, Gesemann M. Nomenclature of glutamate transporters in zebrafish and other vertebrates. Brain Res Bull 2010;83(6):297.

    Article  PubMed  Google Scholar 

  12. Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev 2004;45(3):250–65.

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell ND, Baker GB. An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr Scand 2010;122(3):192–210.

    Article  CAS  PubMed  Google Scholar 

  14. Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA. Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 2010;58(2):465–73.

    Article  CAS  PubMed  Google Scholar 

  15. Almeida RF, Thomazi AP, Godinho GF, Saute JAM, Wofchuk ST, Souza DO, et al. Effects of depressive-like behavior of rats on brain glutamate uptake. Neurochem Res 2010;35(8):1164–71.

    Article  CAS  PubMed  Google Scholar 

  16. Chen J-X, Yao L-H, Xu B-B, Qian K, Wang H-L, Liu Z-C, et al. Glutamate transporter 1-mediated antidepressant-like effect in a rat model of chronic unpredictable stress. J Huazhong Univ Sci Technol Med Sci 2014;34(6):838–44.

    Article  CAS  Google Scholar 

  17. Gourley SL, Espitia JW, Sanacora G, Taylor JR. Antidepressant-like properties of oral riluzole and utility of incentive disengagement models of depression in mice. Psychopharmacology (Berl) 2012;219(3):805–14.

    Article  CAS  Google Scholar 

  18. Zink M, Rapp S, Donev R, Gebicke-Haerter PJ, Thome J. Fluoxetine treatment induces EAAT2 expression in rat brain. J Neural Transm 2011;118(6):849–55.

    Article  CAS  PubMed  Google Scholar 

  19. Reagan LP, Rosell DR, Wood GE, Spedding M, Muñoz C, Rothstein J, et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc Natl Acad Sci U S A 2004;101(7):2179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Otter MH, Matto V, Sõukand R, Skrebuhhova T, Allikmets L, Harro J. Characterization of rat exploratory behavior using the exploration box test. Methods Find Exp Clin Pharmacol 1997;19(10):683–91.

    CAS  PubMed  Google Scholar 

  21. Ma¨llo T, Alttoa A, Kõiv K, Tõnissaar M, Eller M, Harro J. Rats with persistently low or high exploratory activity: behaviour in tests of anxiety and depression, and extracellular levels of dopamine. Behav Brain Res 2007;177(2):269–81.

    Article  CAS  Google Scholar 

  22. Ma¨llo T, Kõiv K, Koppel I, Raudkivi K, Uustare A, Rinken A, et al. Regulation of extracellular serotonin levels and brain-derived neurotrophic factor in rats with high and low exploratory activity. Brain Res 2008;1194(5):110–7.

    Article  CAS  Google Scholar 

  23. Alttoa A, Seeman P, Kõiv K, Eller M, Harro J. Rats with persistently high exploratory activity have both higher extracellular dopamine levels and higher proportion of D(2) (High) receptors in the striatum. Synapse 2009;63(5): 443–6.

    Article  CAS  PubMed  Google Scholar 

  24. Matrov D, Kolts I, Harro J. Cerebral oxidative metabolism in rats with high and low exploratory activity. Neurosci Lett 2007;413(2):154–8.

    Article  CAS  PubMed  Google Scholar 

  25. Alttoa A, Kõiv K, Hinsley TA, Brass A, Harro J. Differential gene expression in a rat model of depression based on persistent differences in exploratory activity. Eur Neuropsychopharmacol 2010;20(5):288–300.

    Article  CAS  PubMed  Google Scholar 

  26. Umegaki H, Roth GS, Ingram DK. Aging of the striatum: mechanisms and interventions. Age 2008;30(4):251–61.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Del Arco A, Segovia G, Prieto L, Mora F. Endogenous glutamate–taurine interaction in striatum and nucleus accumbens of the freely moving rat: studies during the normal process of aging. Mech Ageing Dev 2001;122(4):401–14.

    Article  PubMed  Google Scholar 

  28. Corsi C, Pazzagli M, Bianchi L, Della Corte L, Pepeu G, Pedata F. In vivo amino acid release from the striatum of aging rats: adenosine modulation. Neurobiol Aging 1997;18(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  29. Freeman GB, Gibson GE. Selective alteration of mouse brain neurotransmitter release with age. Neurobiol Aging 1987;8(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  30. Massieu L, Tapia R. Glutamate uptake impairment and neuronal damage in young and aged rats in vivo. J Neurochem 1997;69(3):1151–60.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang WQ, Mundy WR, Thai L, Hudson PM, Gallagher M, Tilson HA, et al. Decreased glutamate release correlates with elevated dynorphin content in the hippocampus of aged rats with spatial learning deficits. Hippocampus 1991;1(4):391–7.

    Article  CAS  PubMed  Google Scholar 

  32. Harro J. Animal models of depression vulnerability. Curr Top Behav Neurosci 2013;14:29–54.

    Article  PubMed  Google Scholar 

  33. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB. Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 2002;125(8):1908–22.

    Article  CAS  PubMed  Google Scholar 

  34. Bridges RJ, Stanley MS, Anderson MW, Cotman CW, Chamberlin AR. Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J Med Chem 1991;34(2):717–25.

    CAS  PubMed  Google Scholar 

  35. Waldmeier PC, Wicki P, Feldtrauer JJ. Release of endogenous glutamate from rat cortical slices in presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid. Naunyn Schmiedebergs Arch Pharmacol 1993;348(5):478–85.

    Article  CAS  PubMed  Google Scholar 

  36. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. San Diego: Academic Press; 1986.

    Google Scholar 

  37. Kehr J. Handbook of microdialysis – methods applications and perspectives, vol. 16. Elsevier; 2006.

  38. Donzanti BA, Yamamoto BK. An improved and rapid HPLC-EC method for the isocratic separation of amino acid neurotransmitters from brain tissue and microdialysis perfusates. Life Sci 1988;43(11):913–22.

    Article  CAS  PubMed  Google Scholar 

  39. Ho YJ, Chang YC, Liu TM, Tai MY, Wong CS, Tsai YF. Striatal glutamate release during novelty exposure-induced hyperactivity in olfactory bulbectomized rats. Neurosci Lett 2000;287(2):117–20.

    Article  CAS  PubMed  Google Scholar 

  40. Shakil SS, Holmer HK, Moore C, Abernathy AT, Jakowec MW, Petzinger GM, et al. High and low responders to novelty show differential effects in striatal glutamate. Synapse 2005;58(3):200–7.

    Article  CAS  PubMed  Google Scholar 

  41. Chefer V, Meis J, Wang G, Kuzmin A, Bakalkin G, Shippenberg T. Repeated exposure to moderate doses of ethanol augments hippocampal glutamate neurotransmission by increasing release. Addict Biol 2011;16(2):229–37.

    Article  CAS  PubMed  Google Scholar 

  42. Takeda A,Sakurada N,Kanno S,Minami A,Oku N. Response of extracellular zinc in the ventral hippocampus against novelty stress. J Neurochem 2006;99(2): 670–6.

    Article  CAS  PubMed  Google Scholar 

  43. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990; 13(7):259–65.

    Article  CAS  PubMed  Google Scholar 

  44. Shimizu N, Duan SM, Hori T, Oomura Y. Glutamate modulates dopamine release in the striatum as measured by brain microdialysis. Brain Res Bull 1990;25(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  45. Mora F, Del Arco A, Segovia G. Glutamate–dopamine interactions in striatum and nucleus accumbens of the conscious rat during aging. In: Graybiel A, Delong M, Kitai S, editors. Basal Ganglia VI SE – 61, vol. 54. US: Springer; 2003.

    Google Scholar 

  46. Yamamoto BK, Davy S. Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 1992;58(5):1736–42.

    Article  CAS  PubMed  Google Scholar 

  47. Massie A, Goursaud S, Schallier A, Vermoesen K, Meshul CK, Hermans E, et al. Time-dependent changes in GLT-1 functioning in striatum of hemi-Parkinson rats. Neurochem Int 2010;57(5):572–8.

    Article  CAS  PubMed  Google Scholar 

  48. Chung EKY, Chen LW, Chan YS, Yung KKL. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol 2008;511(4):421–37.

    Article  CAS  PubMed  Google Scholar 

  49. Vollbrecht PJ, Simmler LD, Blakely RD, Deutch AY. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1. J Neurochem 2014;130(1):109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bianchi L, Ballini C, Colivicchi MA, Della Corte L, Giovannini MG, Pepeu G. Investigation on acetylcholine, aspartate, glutamate and GABA extracellular levels from ventral hippocampus during repeated exploratory activity in the rat. Neurochem Res 2003;28(3–4):565–73.

    Article  CAS  PubMed  Google Scholar 

  51. Giovannini MG, Rakovska A, Benton RS, Pazzagli M, Bianchi L, Pepeu G. Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 2001;106(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  52. Harro J, Kanarik M, Matrov D, Panksepp J. Mapping patterns of depressionrelated brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events. Neurosci Biobehav Rev 2011;35(9):1876–89.

    Article  CAS  PubMed  Google Scholar 

  53. Fanselow MS, Dong H-W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010;65(1):7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 1990;11(9):379–87.

    Article  CAS  PubMed  Google Scholar 

  55. Rosenberg PA, Amin S, Leitner M. Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci 1992;12(1):56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lowy MT, Wittenberg L, Yamamoto BK. Effect of acute stress on hippocampal glutamate levels and spectrin proteolysis in young and aged rats. J Neurochem 1995;65(1):268–74.

    Article  CAS  PubMed  Google Scholar 

  57. Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 1993;60(5):1650–7.

    Article  CAS  PubMed  Google Scholar 

  58. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 1995;15(3):1835–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaanus Harro.

Additional information

These two authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raudkivi, K., Alttoa, A., Leito, I. et al. Differences in extracellular glutamate levels in striatum of rats with high and low exploratory activity. Pharmacol. Rep 67, 858–865 (2015). https://doi.org/10.1016/j.pharep.2015.02.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2015.02.002

Keywords

Navigation