Skip to main content

Advertisement

Log in

The MCP-1, CCL-5 and SDF-1 chemokines as pro-inflammatory markers in generalized anxiety disorder and personality disorders

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Introduction

The co-occurrence of generalized anxiety disorder and personality disorders suggests the existence of association between the neurobiological predispositions leading to the development of these disorders and activation of cytokine system. Pro-inflammatory chemokines such as CCL-5/RANTES (regulated upon activation normal T cell expressed and secreted) and CXCL12/SDF-1 (stromal derived factor) play an important role in immune response.

Methods

A total of 160 participants were enrolled in the study, 120 of whom comprised the study group (people with the dual diagnosis of personality disorder and generalized anxiety disorder). The mean age was 41.4 ± 3.5 years (range: 20–44 years). The control group consisted of 40 healthy individuals in the mean age of 40.8 ± 3.1 years (range: 20–43 years). A blood sample was collected from each participant and the plasma levels of the CCL-2/MCP-1 (monocyte chemoattractant protein-1), RANTES and SDF-1 chemokines were determined by ELISA.

Results

Increased levels of MCP-1 and SDF-1 were found both in women and in men versus the control group for all types of personality disorders. The levels of CCL-5 in men were significantly increased versus the control group and significantly higher in women than in men. Neither women nor men with avoidant or obsessive-compulsive personality disorder showed any significant differences in MCP-1 or SFD-1 levels. In subjects with borderline personality disorder, the levels of the study chemokines were higher in women than in men.

Conclusions

Our study has shown the need for determination of proinflammatory interleukins which are considered as biomarkers of personality disorders and generalized anxiety disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson J, Snider S, Sellbom M, Krueger R, Hopwood C. A comparison of the DSM-5 section II and section III personality disorder structures. Psychiatry Res 2014;216(3):363–72.

    Article  PubMed  Google Scholar 

  2. Harkness AR, Reynolds SM, Lilienfeld SO. A review of systems for psychology and psychiatry: adaptive systems, Personality Psychopathology Five (PSY-5), and the DSM-5. J Pers Assess 2014;96(2):121–39.

    Article  PubMed  Google Scholar 

  3. Clark LA, Ro E. Three-pronged assessment and diagnosis of personality disorder and its consequences: personality functioning, pathological traits, and psychosocial disability. Pers Disord 2014;5(1):55–69.

    Article  Google Scholar 

  4. Ramsay DS, Woods SC. Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 2014;121(2):225–47.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nolte T, Guiney J, Fonagy P, Mayes LC, Luyten P. Interpersonal stress regulation and the development of anxiety disorders: an attachment-based developmental framework. Front Behav Neurosci 2011;5:55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vachon DD, Sellbom M, Ryder AG, Miller JD, Bagby RM. A five-factor model description of depressive personality disorder. J Pers Disord 2009;23(5): 447–65.

    Article  PubMed  Google Scholar 

  7. Andrews G, Hobbs MJ, Borkovec TD, Beesdo K, Craske MG, Heimberg RG, et al. Generalized worry disorder: a review of DSM-IV generalized anxiety disorder and options for DSM-V. Depress Anxiety 2010;27(2):134–47.

    Article  PubMed  Google Scholar 

  8. Vogelzangs N, Beekman AT, de Jonge P, Penninx BW. Anxiety disorders and inflammation in a large adult cohort. Transl Psychiatry 2013;3:e249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 2013;33(34):13820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep 2013;65(6):1655–62.

    Article  PubMed  Google Scholar 

  11. Hilbert K, Lueken U, Beesdo-Baum K. Neural structures, functioning and connectivity in generalized anxiety disorder and interaction with neuroendocrine systems: a systematic review. J Affect Disord 2014;158:114–26.

    Article  PubMed  Google Scholar 

  12. Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013;104: 67–92.

    Article  PubMed  Google Scholar 

  13. Castellani ML, De Lutiis MA, Toniato E, Conti F, Felaco P, Fulcheri M, et al. Impact of RANTES, MCP-1 and IL-8 in mast cells. J Biol Regul Homeost Agents 2010;24(1):1–6.

    CAS  PubMed  Google Scholar 

  14. Luo Y, Lathia J, Mughal M. SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons. J Biol Chem 2008;283(36):24789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Theoharides TC, Weinkauf C, Conti P. Brain cytokines and neuropsychiatric disorders. J Clin Psychopharmacol 2004;24(6):577–81.

    Article  PubMed  Google Scholar 

  16. Choi SS, Lee HJ, Lim I, Satoh J, Kim SU. Human astrocytes: secretome profiles of cytokines and chemokines. PLOS ONE 2014;9(4):e92325.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mélik-Parsadaniantz S, Rostène W. Chemokines and neuromodulation. J Neuroimmunol 2008;198(1–2):62–8.

    Article  PubMed  Google Scholar 

  18. Gárate I, Garcia-Bueno B, Madrigal JL, Caso JR, Alou L, Gomez-Lus ML, et al. Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol Psychiatry 2013;73(1):32–43.

    Article  PubMed  Google Scholar 

  19. Osma J, García-Palacios A, Botella C, Barrada JR. Personality disorders among patients with panic disorder and individuals with high anxiety sensitivity. Psicothema 2014;26(2):159–65.

    PubMed  Google Scholar 

  20. Hoge EA, Bui E, Marques L, Metcalf CA, Morris LK, Robinaugh DJ, et al. Randomized controlled trial of mindfulness meditation for generalized anxiety disorder: effects on anxiety and stress reactivity. J Clin Psychiatry 2013;74(8): 786–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lizeretti NP, Extremera N. Emotional intelligence and clinical symptoms in outpatients with generalized anxiety disorder (GAD). Psychiatr Q 2011;82(3): 253–60.

    Article  PubMed  Google Scholar 

  22. Theoharides TC, Zhang B, Conti P. Decreased mitochondrial function and increased brain inflammation in bipolar disorder and other neuropsychiatric diseases. J Clin Psychopharmacol 2011;31(6):685–7.

    Article  PubMed  Google Scholar 

  23. Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci 2014;8:65.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dayer A. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders. Dialogues Clin Neurosci 2014;16(1):29–41.

    PubMed  PubMed Central  Google Scholar 

  25. Hoge EA, Brandstetter K, Moshier S, Pollack MH, Wong KK, Simon NM. Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder. Depress Anxiety 2009;26(5):447–55.

    Article  CAS  PubMed  Google Scholar 

  26. Redwine L, Snow S, Mills P, Irwin M. Acute psychological stress: effects on chemotaxis and cellular adhesion molecule expression. Psychosom Med 2003;65(4):598–603.

    Article  CAS  PubMed  Google Scholar 

  27. Brown CM, Mulcahey TA, Filipek NC, Wise PM. Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors alpha and beta. Endocrinology 2010;151(10):4916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Straub RH. The complex role of estrogens in inflammation. Endocr Rev 2007;28(5):521–74.

    Article  CAS  PubMed  Google Scholar 

  29. Callewaere C, Banisadr G, Rostène W, Parsadaniantz SM. Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J Mol Endocrinol 2007;38(3):355–63.

    Article  CAS  PubMed  Google Scholar 

  30. Dantzer R, Konsman JP, Bluthé RM, Kelley KW. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 2000;85(1–3):60–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kageyama K, Tamasawa N, Suda T. Signal transduction in the hypothalamic corticotropin-releasing factor system and its clinical implications. Stress 2011;14(4):357–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa A. Ogłodek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogłodek, E.A., Szota, A.M., Just, M.J. et al. The MCP-1, CCL-5 and SDF-1 chemokines as pro-inflammatory markers in generalized anxiety disorder and personality disorders. Pharmacol. Rep 67, 85–89 (2015). https://doi.org/10.1016/j.pharep.2014.08.006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.08.006

Keywords

Navigation