Skip to main content
Log in

Interactions between levetiracetam and cardiovascular drugs against electroconvulsions in mice

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Hypertension and heart failure belong to common comorbid conditions with epilepsy so drug interactions between antiepileptics and cardiovascular drugs are possible in clinical practice. The aim of this study was to evaluate the effects of angiotensin AT1 receptor antagonists (losartan potassium and candesartan cilexetil), angiotensin-converting enzyme (ACE) inhibitors (captopril and perindopril arginine) and diuretics (hydrochlorothiazide and ethacrynic acid) on the anticonvulsant activity of levetiracetam (LEV) in mice.

Methods

The protective action of LEV was examined in the maximal electroshock seizure threshold test. Drugs were administered intraperitoneally (ip). Additionally, combinations of cardiovascular drugs with LEV were tested for adverse effects in the passive avoidance task and the chimney test.

Results

Losartan potassium (50 mg/kg), candesartan cilexetil (8 mg/kg), captopril (50 mg/kg), hydrochlorothiazide (100 mg/kg) and ethacrynic acid (100 mg/kg) did not affect the anticonvulsant activity of LEV. Perindopril arginine (10 mg/kg) raised the convulsive threshold for LEV administered at doses of 100, 300 and 500 mg/kg. This interaction could be pharmacodynamic in nature because the brain concentration of LEV remained unchanged by perindopril. The adverse effects of the combined treatment with LEV and cardiovascular drugs were not observed in the passive avoidance task or the chimney test.

Conclusions

Although experimental data can be hardly extrapolated to clinical practice, it is suggested that perindopril arginine may positively influence the anticonvulsant action of LEV in epileptic patients. The use of losartan potassium, candesartan cilexetil, captopril, hydrochlorothiazide or ethacrynic acid in patients treated with LEV seems neutral regarding its anticonvulsant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaitatzis A, Carroll K, Majeed A, Sander JW. The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia 2004;45(12):1613–22.

    Article  PubMed  Google Scholar 

  2. Téllez-Zenteno JF, Matijevic S, Wiebe S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia 2005;46(12):1955–62.

    Article  PubMed  Google Scholar 

  3. Hesdorffer DC, Hauser WA, Annegers JF, Rocca WA. Severe, uncontrolled hypertension and adult-onset seizures: a case-control study in Rochester, Minnesota. Epilepsia 1996;37(8):736–41.

    Article  CAS  PubMed  Google Scholar 

  4. Ng SK, Hauser WA, Brust JC, Susser M. Hypertension and the risk of new-onset unprovoked seizures. Neurology 1993;43(2):425–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kaminski RM, Matagne A, Patsalos PN, Klitgaard H. Benefit of combination therapy in epilepsy: a review of the preclinical evidence with levetiracetam. Epilepsia 2009;50(3):387–97.

    Article  CAS  PubMed  Google Scholar 

  6. Lyseng-Williamson KA. Levetiracetam: a review of its use in epilepsy. Drugs 2011;71(4):489–514.

    CAS  PubMed  Google Scholar 

  7. Ruiz-Giménez J, Sánchez-Alvarez JC, Cañadillas-Hidalgo F, Serrano-Castro PJ, Andalusian Epilepsy Society. Antiepileptic treatment in patients with epilepsy and other comorbidities. Seizure 2010;19(7):375–82.

    Article  PubMed  Google Scholar 

  8. Löscher W, Hönack D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 1993;232(2–3):147–58.

    Article  PubMed  Google Scholar 

  9. Łuszczki JJ, Czuczwar SJ. How significant is the difference between drug doses influencing the threshold for electroconvulsions? Pharmacol Rep 2005;57(6):782–786.

  10. Venault P, Chapouthier G, Prado de Carvalho L, Simiand J, Morre M, Dodd RH, et al. Benzodiazepine impairs and β-carboline enhances performance in learning and memory tasks. Nature 1986;321(6073):864–6.

    Article  CAS  PubMed  Google Scholar 

  11. Boissier JR, Tardy J, Diverres JC. Une nouvelle methode simple pour explorer l’action ‘tranquilisante’: le test de la cheminee. Med Exp 1960;3(1):81–4.

    CAS  Google Scholar 

  12. Anthopoulos L, Apostolou T, Bonoris P, Foussas S, Lefkos N, Zombolos S. Comparative haemodynamic responses to the first dose of short- and longacting ACE inhibitors in patients with congestive heart failure. Curr Med Res Opin 2001;17(4):290–7.

    Article  CAS  PubMed  Google Scholar 

  13. Farsang C. Indications for and utilization of angiotensin receptor II blockers in patients at high cardiovascular risk. Vasc Health Risk Manag 2011;7:605–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacFadyen RJ, Lees KR, Reid JL. Differences in first dose response to angiotensin converting enzyme inhibition in congestive heart failure: a placebo controlled study. Br Heart J 1991;66(3):206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki O, Ishii H, Kobayashi S. Effects of an angiotensin 2 receptor blocker plus diuretic combination drug in chronic heart failure complicated by hypertension. J Int Med Res 2011;39(4):1420–6.

    Article  CAS  PubMed  Google Scholar 

  16. Molnar J, Somberg JC. The clinical pharmacology of ethacrynic acid. Am J Ther 2009;16(1):86–92.

    Article  PubMed  Google Scholar 

  17. Reid KH, Guo SZ, Iyer VG. Agents which block potassium-chloride cotransport prevent sound-triggered seizures in post-ischemic audiogenic seizure-prone rats. Brain Res 2000;864(1):134–7.

    Article  CAS  PubMed  Google Scholar 

  18. Łukawski K, Świderska G, Czuczwar SJ. Effect of ethacrynic acid on the anticonvulsant activity of the second-generation antiepileptics against maximal electroshock-induced seizures in mice. Epilepsy Res 2009;87(2–3):190–6.

    Article  PubMed  CAS  Google Scholar 

  19. Łukawski K, Świderska G, Łuszczki JJ, Czuczwar SJ. Influence of ethacrynic acid on the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock seizure model. Pharmacol Rep 2010;62(5):808–813.

    Article  PubMed  Google Scholar 

  20. Minano FJ, Serrano JS, Sancibrian M, Serrano MI. Effect of peptidyl-dipeptidase inhibitors in experimental convulsions in mice. Fundam Clin Pharmacol 1987;1(2):77–83.

    Article  CAS  PubMed  Google Scholar 

  21. De Sarro G, Paola ED, Gratteri S, Gareri P, Rispoli V, Siniscalchi A, et al. Fosinopril and zofenopril, two angiotensin-converting enzyme (ACE) inhibitors, potentiate the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Pharmacol Res 2012;65(3):285–96.

    Article  PubMed  CAS  Google Scholar 

  22. Łukawski K, Jakubus T, Raszewski G, Czuczwar SJ. Captopril potentiates the anticonvulsant activity of carbamazepine and lamotrigine in the mouse maximal electroshock seizure model. J Neural Transm 2010;117(10):1161–6.

    Article  PubMed  CAS  Google Scholar 

  23. Łukawski K, Świderska G, Czuczwar SJ. Effect of hydrochlorothiazide on the anticonvulsant action of antiepileptic drugs against maximal electroshockinduced seizures in mice. Pharmacol Rep 2012;64(2):315–20.

    Article  PubMed  Google Scholar 

  24. Pereira MG, Becari C, Oliveira JA, Salgado MC, Garcia-Cairasco N, Costa-Neto CM. Inhibition of the renin-angiotensin system prevents seizures in a rat model of epilepsy. Clin Sci (Lond) 2010;119(11):477–82.

    Article  CAS  Google Scholar 

  25. Łukawski K, Janowska A, Jakubus T, Tochman-Gawda A, Czuczwar SJ. Angiotensin AT1 receptor antagonists enhance the anticonvulsant action of valproate in the mouse model of maximal electroshock. Eur J Pharmacol 2010;640(1–3):172–177.

    Article  PubMed  CAS  Google Scholar 

  26. Kurosaki R, Muramatsu Y, Kato H, Watanabe Y, Imai Y, Itoyama Y, et al. Effect of angiotensin-converting enzyme inhibitor perindopril on interneurons in MPTP-treated mice. Eur Neuropsychopharmacol 2005;15(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  27. Raghavendra V, Chopra K, Kulkarni SK. Involvement of cholinergic system in losartan-induced facilitation of spatial and short-term working memory. Neuropeptides 1998;32(5):417–21.

    Article  CAS  PubMed  Google Scholar 

  28. Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 1949;96(2):99–113.

    CAS  PubMed  Google Scholar 

  29. Łuszczki JJ, Borowicz KK, Świąder M, Czuczwar SJ. Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 2003;44(4):489–499.

    Article  PubMed  Google Scholar 

  30. Donato Di Paola E, Gareri P, Davoli A, Gratteri S, Scicchitano F, Naccari C, et al. Influence of levetiracetam on the anticonvulsant efficacy of conventional antiepileptic drugs against audiogenic seizures in DBA/2 mice. Epilepsy Res 2007;75(2–3):112–21.

    Article  CAS  Google Scholar 

  31. Wojda E, Wlaź A, Patsalos PN, Łuszczki JJ. Isobolographic characterization of interactions of levetiracetam with the various antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. Epilepsy Res 2009;86(2–3):163–174.

    Article  CAS  PubMed  Google Scholar 

  32. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 2004;101(26):9861–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madeja M, Margineanu DG, Gorji A, Siep E, Boerrigter P, Klitgaard H, et al. Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 2003;45(5):661–671.

  34. Pisani A, Bonsi P, Martella G, De Persis C, Costa C, Pisani F, et al. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 2004;45(7):719–28.

    Article  CAS  PubMed  Google Scholar 

  35. Zona C, Niespodziany I, Marchetti C, Klitgaard H, Bernardi G, Margineanu DG. Levetiracetam does not modulate neuronal voltage-gated Na+ and T-type Ca2+ currents. Seizure 2001;10(4):279–86.

    Article  CAS  PubMed  Google Scholar 

  36. Rigo JM, Hans G, Nguyen L, Rocher V, Belachew S, Malgrange B, et al. The antiepileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents. Br J Pharmacol 2002;136(5):659–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palma E, Ragozzino D, Di Angelantonio S, Mascia A, Maiolino F, Manfredi M, et al. The antiepileptic drug levetiracetam stabilizes the human epileptic GABAA receptors upon repetitive activation. Epilepsia 2007;48(10):1842–9.

    Article  CAS  PubMed  Google Scholar 

  38. Awasthi H, Kaushal D, Siddiqui HH. Chronic inhibition of central angiotensin-converting enzyme ameliorates colchicine-induced memory impairment in mice. Sci Pharm 2012;80(3):647–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tota S, Nath C, Najmi AK, Shukla R, Hanif K. Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behav Brain Res 2012;232(1):66–76.

    Article  CAS  PubMed  Google Scholar 

  40. Sengul G, Coskun S, Cakir M, Coban MK, Saruhan F, Hacimuftuoglu A. Neuroprotective effect of ACE inhibitors in glutamate -induced neurotoxicity: rat neuron culture study. Turk Neurosurg 2011;21(3):367–71.

    PubMed  Google Scholar 

  41. Barton ME, Peters SC, Shannon HE. Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Res 2003;56(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  42. Czuczwar SJ, Borowicz KK, Kleinrok Z, Tutka P, Zarnowski T, Turski WA. Influence of combined treatment with NMDA and non-NMDA receptor antagonists on electroconvulsions in mice. Eur J Pharmacol 1995;281(3):327–33.

    Article  CAS  PubMed  Google Scholar 

  43. De Luca G, Di Giorgio RM, Macaione S, Calpona PR, Costantino S, Di Paola ED, et al. Susceptibility to audiogenic seizure and neurotransmitter amino acid levels in different brain areas of IL-6-deficient mice. Pharmacol Biochem Behav 2004;78(1):75–81.

    Article  PubMed  CAS  Google Scholar 

  44. Patsalos PN, Fröscher W, Pisani F, van Rijn CM. The importance of drug interactions in epilepsy therapy. Epilepsia 2002;43(4):365–85.

    Article  CAS  PubMed  Google Scholar 

  45. Wright C, Downing J, Mungall D, Khan O, Williams A, Fonkem E, et al. Clinical pharmacology and pharmacokinetics of levetiracetam. Front Neurol 2013;4:192.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Patsalos PN. Clinical pharmacokinetics of levetiracetam. Clin Pharmacokinet 2004;43(11):707–24.

    Article  CAS  PubMed  Google Scholar 

  47. Telejko E. Perindopril arginine: benefits of a new salt of the ACE inhibitor perindopril. Curr Med Res Opin 2007;23(5):953–60.

    Article  CAS  PubMed  Google Scholar 

  48. Brodie MJ, Kwan P. The star systems: overview and use in determining antiepileptic drug choice. CNS Drugs 2001;15(1):1–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Łukawski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łukawski, K., Raszewski, G. & Czuczwar, S.J. Interactions between levetiracetam and cardiovascular drugs against electroconvulsions in mice. Pharmacol. Rep 66, 1100–1105 (2014). https://doi.org/10.1016/j.pharep.2014.07.008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.07.008

Keywords

Navigation