Skip to main content
Log in

Optimal Lowest Instrumented Vertebra for Thoracic Adolescent Idiopathic Scoliosis

  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study Design

Retrospective cohort chart review.

Objective

To determine the optimal lowest instrumented vertebra (LIV) following posterior segmental spinal instrumented fusion (PSSIF) of thoracic adolescent idiopathic scoliosis (AIS) with LIV at L2 or above.

Summary of Background Data

Few studies evaluate the optimal LIV based on rotation or center sacral vertical line (CSVL).

Methods

A radiographic assessment of 544 thoracic major AIS patients (average age 14.7 years) with minimum 2 years’ follow-up (average 4.1 years) after PSSIF was performed. The LIV was divided by CSVL: stable vertebra 1 (SV-1) if the CSVL fell between the medial walls of the LIV pedicles; SV-2 if between stable vertebra 1 and 3; and SV-3 if the CSVL did not touch the LIV. LIV was divided by rotation into: neutral vertebra 0 (NV-0) if the LIV was at or distal to the neutral vertebra; NV-1 if one vertebra proximal to the NV; NV-2 if two vertebrae proximal; and NV-3 if three vertebrae proximal to the NV.

Results

The prevalence of adding-on (AO) or distal junctional kyphosis (DJK) at ultimate follow-up was 13.6%. Patients with AO or DJK had a higher rate of open triradiate cartilage, LIV not touching the CSVL, and more proximal to the NV (p < .05). Risk factors were SV-3 (39% vs. SV-2 14%, SV-1 9%, p < .05), NV-3 (35% vs. NV-2 9%, NV-1 6%, NV-0 12%, p = .000), open triradiate cartilage (43% vs. closed 13%, p < .05), lumbar C modifier (22% vs. B modifier 8%, A modifier 13%, p < .05), and Risser stage 0 (19% vs. 12% Risser 1–5, p < .05).

Conclusion

The prevalence of AO or DJK at ultimate follow-up of PSSIF for AIS with LIV at L2 or above was 13.6%. Risk factors included the CSVL outside the LIV, LIV 3 or more proximal to the NV, open triradiate cartilage, lumbar C modifier, and Risser stage 0.

Level of Evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hibbs RA. A report of fifty-nine cases of scoliosis treated by the fusion operation. J Bone Joint Surg Am 1924;6:3–37.

    Google Scholar 

  2. Hibbs RA, Risser JC, Ferguson AB. Scoliosis treated by the fusion operation and an end-result study of three hundred and sixty cases. J Bone Joint Surg Am 1933;13:91–104.

    Google Scholar 

  3. Butte FL. Scoliosis treated by the wedging jacket. Selection of areas to be fused. J Bone Joint Surg Am 1938;20:1–22.

    Google Scholar 

  4. Moe JH. A critical analysis of methods of fusion for scoliosis: an evaluation in two hundred and sixty-six patients. J Bone Joint Surg Am 1958;40:529–697.

    Article  PubMed  Google Scholar 

  5. Cobb JR. The problem of the primary curve. J Bone Joint Surg Am 1960;42:1413–25.

    Article  PubMed  Google Scholar 

  6. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 1962;44: 591–610.

    Article  PubMed  Google Scholar 

  7. Risser JC. Scoliosis: past and present. J Bone Joint Surg Am 1964;46: 167–99.

    Article  CAS  PubMed  Google Scholar 

  8. Goldstein LA. Surgical management of scoliosis. J Bone Joint Surg Am 1966;48:167–96.

    Article  Google Scholar 

  9. Harrington PR. Technical details in relation to the successful instrumentation in scoliosis. Orthop Clin North Am 1972;3:49–67.

    CAS  PubMed  Google Scholar 

  10. King HA, Moe JH, Bradford DS, Winter RB. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 1983;65: 1302–13.

    Article  CAS  PubMed  Google Scholar 

  11. Dubousset J, Herring JA, Shufflebarger H. The crankshaft phenomenon. J Pediatr Orthop 1989;9:541–50.

    Article  CAS  PubMed  Google Scholar 

  12. Thompson JP, Transfeldt EE, Bradford DS, et al. Decompensation after Cotrel-Dubousset instrumentation of idiopathic scoliosis. Spine 1990;15:927–31.

    Article  CAS  PubMed  Google Scholar 

  13. McCance SE, Denis F, Lonstein JE, Winter RB. Coronal and sagittal balance in surgically treated adolescent idiopathic scoliosis with the King II curve pattern. A review of 67 consecutive cases having selective thoracic arthrodesis. Spine J 1998;23:2063–73.

    Article  CAS  Google Scholar 

  14. Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 2001;83:1169–81.

    Article  CAS  PubMed  Google Scholar 

  15. Suk SI, Lee SM, Chung ER, et al. Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine 2003;28:484–91.

    PubMed  Google Scholar 

  16. Newton PO, Faro FD, Lenke LG, et al. Factors involved in the decision to perform a selective versus nonselective fusion of Lenke 1B and 1C (King-Moe II) curves in adolescent idiopathic scoliosis. Spine 2003;28:S217–23.

    Article  PubMed  Google Scholar 

  17. Lowe TG, Lenke L, Betz R, et al. Distal junctional kyphosis of adolescent idiopathic thoracic curves following anterior or posterior instrumented fusion: incidence, risk factors, and prevention. Spine 2006;31:299–302.

    Article  PubMed  Google Scholar 

  18. Kim YJ, Lenke LG, Bridwell KH, et al. Proximal junctional kyphosis in adolescent idiopathic scoliosis after 3 different types of posterior segmental spinal instrumentation and fusions: incidence and risk factor analysis of 410 cases. Spine 2007;32:2731–8.

    Article  PubMed  Google Scholar 

  19. Vedantam R, Lenke LG, Bridwell KH, et al. Comparison of pushprone and lateral-bending radiographs for predicting postoperative coronal alignment in thoracolumbar and lumbar scoliotic curves. Spine 2000;25:76–81.

    Article  CAS  PubMed  Google Scholar 

  20. Nash Jr CL, Moe JH. A study of vertebral rotation. J Bone Joint Surg Am 1969;51:223–9.

    Article  PubMed  Google Scholar 

  21. Large DF, Doig WG, Dickens DR, et al. Surgical treatment of double major scoliosis. Improvement of the lumbar curve after fusion of the thoracic curve. J Bone Joint Surg Br 1991;73:121–4.

    Article  CAS  PubMed  Google Scholar 

  22. Cotrel Y, Dubousset J. A new technique for segmental spinal osteosynthesis using the posterior approach. Rev Chir Orthop Reparatrice Appar Mot 1984;70:489–94.

    CAS  PubMed  Google Scholar 

  23. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res 1988;227:10–23.

    CAS  PubMed  Google Scholar 

  24. Webb JK, Burwell RG, Cole AA, et al. Posterior instrumentation in scoliosis. Eur Spine J 1995;4:2–5.

    Article  CAS  PubMed  Google Scholar 

  25. Hamill CL, Lenke LG, Bridwell KH, et al. The use of pedicle screw fixation to improve correction in the lumbar spine of patients with idiopathic scoliosis. Spine 1996;21:1241–9.

    Article  CAS  PubMed  Google Scholar 

  26. Liljenqvist U, Halm H, Link TH. Pedicle Screw Instrumentation of the thoracic spine in idiopathic scoliosis. Spine 1997;22:2239–45.

    Article  CAS  PubMed  Google Scholar 

  27. Suk SI, Lee CK, Kim W, et al. Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine 1995;20:1399–405.

    Article  CAS  PubMed  Google Scholar 

  28. Burton DC, Asher MA, Lai SM. The selection of fusion levels using torsional correction techniques in the surgical treatment of idiopathic scoliosis. Spine 1999;24:1728–39.

    Article  CAS  PubMed  Google Scholar 

  29. Kim YJ, Lenke LG, Cho SK, et al. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis: A matched cohort analysis. Spine 2004;29S:2040–8.

    Article  Google Scholar 

  30. Cheng I, Kim YJ, Gupta MC, et al. Apical sublaminar wires versus pedicle screws—which provides better results for surgical correction of adolescent idiopathic scoliosis? Spine 2005;30:2104–12.

    Article  PubMed  Google Scholar 

  31. Kim YJ, Lenke LG, Bridwell KH, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis: a matched cohort analysis. Spine 2006;31:291–8.

    Article  PubMed  Google Scholar 

  32. Sponseller PD, Betz R, Newton PO, et al. Differences in curve behavior after fusion in adolescent idiopathic scoliosis patients with open triradiate cartilages. Spine 2009;34:827–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charla R. Fischer MD.

Additional information

Author disclosures: none.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, C.R., Lenke, L.G., Bridwell, K.H. et al. Optimal Lowest Instrumented Vertebra for Thoracic Adolescent Idiopathic Scoliosis. Spine Deform 6, 250–256 (2018). https://doi.org/10.1016/j.jspd.2017.10.002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2017.10.002

Keywords

Navigation