Skip to main content
Log in

The Spinopelvic Geometry in Different Lenke Curve Types of Adolescent Idiopathic Scoliosis

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Background

The Lenke classification is well established in differentiation of curve types in adolescent idiopathic scoliosis (AIS) and guides selection of fusion levels. However, to date, it has neglected the spinopelvic parameters that have been associated with compensatory mechanisms in balancing the human erect posture and adjacent segment problems after spinal fusion. The aim of this study was to investigate spinopelvic parameters in different types of AIS curves.

Material and Methods

Preoperative whole-spine radiographs from 100 patients with AIS were reviewed and the curves were classified according to Lenke. In addition, sagittal spinopelvic parameters (pelvic incidence, sacral slope, pelvic tilt) were measured and compared between different curve types and to normal population values.

Results

The spinopelvic balance was not statistically distinguishable in different Lenke curve types. Slight differences of the spinopelvic balance, compared with normal population values, were found in AIS Lenke Type 5 and 6 curves (major curve at the lumbar/thoracolumbar region) with a pelvic incidence of 44° ± 8° (norm 49°), sacral slope of 34° ± 7° (norm 41°), and pelvic tilt of 10° ± 7° (norm 8°).

Conclusion

Overall, the variances of spinopelvic parameters in different AIS curve types do not seem statistically large enough for a potential clinical relevance. However, the sacrum is more verticalized in AIS curves with major curves located in the lumbar/thoracolumbar region. It remains to be investigated whether such a verticalized sacrum might be a compensatory mechanism to keep the whole spine balanced and if it reverses with correction of the scoliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlösser TP, van der Heijden GJ, Versteeg AL, Castelein RM. How “idiopathic” is adolescent idiopathic scoliosis? A systematic review on associated abnormalities. PLoS One 2014;9:e97461.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parent S, Newton P, Wenger DR. Adolescent idiopathic scoliosis: etiology, anatomy, natural history, and bracing. Instr Course Lect 2005;54:529–66.

    PubMed  Google Scholar 

  3. Lowe TG, Edgar M, Margulies JY, et al. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am 2000;82–A:1157–68.

    Article  Google Scholar 

  4. Kouwenhoven JW, Castelein R. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine (Phila Pa 1976) 2008;33:2898–908.

    Article  Google Scholar 

  5. Altaf F, Gibson A, Dannawi Z, Noordeen H. Adolescent idiopathic scoliosis. BMJ 2013;346:f2508.

    Article  PubMed  Google Scholar 

  6. Rowe DE, Bernstein SM, Riddick MF, et al. A meta-analysis of the efficacy of non-operative treatments for idiopathic scoliosis. J Bone Joint Surg Am 1997;79:664–74.

    Article  CAS  PubMed  Google Scholar 

  7. Lenke LG. The Lenke classification system of operative adolescent idiopathic scoliosis. Neurosurg Clin N Am 2007;18:199–206.

    Article  PubMed  Google Scholar 

  8. Harrington PR. Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 1962;44:591–610.

    Article  PubMed  Google Scholar 

  9. Goldstein LA. Surgical management of scoliosis. J Bone Joint Surg Am 1966;48:167–96.

    Article  Google Scholar 

  10. Butte FL. Scoliosis treatment by the wedging jacket. Selection of the area to be fused. J Bone Joint Surg 1938;20:1–22.

    Google Scholar 

  11. King HA, Moe JH, Bradford DS, Winter RB. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 1983;65:1302–13.

    Article  CAS  PubMed  Google Scholar 

  12. Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 2001;83–A:1169–81.

    Article  Google Scholar 

  13. Lenke LG, Betz RR, Haher TR, et al. Multisurgeon assessment of surgical decision-making in adolescent idiopathic scoliosis: curve classification, operative approach, and fusion levels. Spine (Phila Pa 1976) 2001;26:2347–53.

    Article  CAS  Google Scholar 

  14. During J, Goudfrooij H, Keessen W, et al. Toward standards for posture. Postural characteristics of the lower back system in normal and pathologic conditions. Spine (Phila Pa 1976) 1985;10:83–7.

    Article  CAS  Google Scholar 

  15. Duval-Beaupère G, Schmidt C, Cosson P. A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 1992;20:451–62.

    Article  PubMed  Google Scholar 

  16. Mac-Thiong JM, Labelle H, Berthonnaud E, et al. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J 2007;16:227–34.

    Article  PubMed  Google Scholar 

  17. Roussouly P, Pinheiro-Franco JL. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 2011;20(suppl 5):609–18.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mac-Thiong JM, Berthonnaud E, Dimar JR, et al. Sagittal alignment of the spine and pelvis during growth. Spine (Phila Pa 1976) 2004;29:1642–7.

    Article  Google Scholar 

  19. Mac-Thiong JM, Labelle H, Charlebois M, et al. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine (Phila Pa 1976) 2003;28:1404–9.

    Google Scholar 

  20. Le Huec JC, Aunoble S, Philippe L, Nicolas P. Pelvic parameters: origin and significance. Eur Spine J 2011;20(suppl 5):564–71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Decamps H, Commare-Nordmann MC, Marty C. Modification of pelvic angle during the human growth (in French). Biom Hum Anthropol 1999;17:59–63.

    Google Scholar 

  22. Rothenfluh DA, Mueller D, Rothenfluh E, Min K. Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J 2015;24:1251–8.

    Article  PubMed  Google Scholar 

  23. Abelin-Genevois K, Estivalezes E, Briot J, et al. Spino-pelvic alignment influences disc hydration properties after AIS surgery: a prospective MRI-based study. Eur Spine J 2015;24:1183–90.

    Article  PubMed  Google Scholar 

  24. Schlösser TP, Vincken KL, Rogers K, et al. Natural sagittal spinopelvic alignment in boys and girls before, at and after the adolescent growth spurt. Eur Spine J 2015;24:1158–67.

    Article  PubMed  Google Scholar 

  25. Dubousset J, Charpak G, Dorion I, et al. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 2005;189:287–97.

    PubMed  Google Scholar 

  26. Dietrich TJ, Pfirrmann CW, Schwab A, et al. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose x-ray system for upright full-length lower limb and whole spine radiography. Skeletal Radiol 2013;42:959–67.

    Article  PubMed  Google Scholar 

  27. Deschênes S, Charron G, Beaudoin G, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning x-ray imager. Spine (Phila Pa 1976) 2010;3:989–94.

    Article  Google Scholar 

  28. Berthonnaud E, Roussouly P, Dimnet J. The parameters describing the shape and the equilibrium of the set back pelvis and femurs in sagittal view. Innov Techn Biol Med 1998;19:411–26.

    Google Scholar 

  29. Lecoq C, Jacquemier M, Dutour O, et al. Sagittal equilibrium of the pelvis: analysis of the inclination of the ischio-pubic ramus from the horizontal. Rev Chir Orthop Reparatrice Appar Mot 2000;86:390–5.

    CAS  PubMed  Google Scholar 

  30. Xiong B, Sevastik J, Hedlund R, Sevastik B. Sagittal configuration of the spine and growth of the posterior elements in early scoliosis. J Orthop Res 1994;12:113–8.

    Article  CAS  PubMed  Google Scholar 

  31. Ohlen G, Aaro S, Bylund P. The sagittal configuration and mobility of the spine in idiopathic scoliosis. Spine (Phila Pa 1976) 1988;13:413–6.

    Article  CAS  Google Scholar 

  32. Poussa M, Hæarköonen H, Mellin G. Spinal mobility in adolescent girls with idiopathic scoliosis and in structurally normal controls. Spine (Phila Pa 1976) 1989;14:217–9.

    Article  CAS  Google Scholar 

  33. Barrey C, Jund J, Noseda O, Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 2007;16:1459–67.

    PubMed  PubMed Central  Google Scholar 

  34. Jang JS, Lee SH, Min JH, Maeng DH. Changes in sagittal alignment after restoration of lower lumbar lordosis in patients with degenerative flat back syndrome. J Neurosurg Spine 2007;7:387–92.

    Article  PubMed  Google Scholar 

  35. Stagnara P, De Mauroy JC, Dran G, et al. Reciprocal angulation of vertebral bodies in a sagittal plane: approach to references for the evaluation of kyphosis and lordosis. Spine (Phila Pa 1976) 1982;7:335–42.

    Article  CAS  Google Scholar 

  36. Skalli W, Zeller RD, Miladi L, et al. Importance of pelvic compensation in posture and motion after posterior spinal fusion using CD instrumentation for idiopathic scoliosis. Spine (Phila Pa 1976) 2006;31:359–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Schmid MD.

Additional information

Author disclosures: MF (none); SC (none); SLS (none).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshad, M., Catanzaro, S. & Schmid, S.L. The Spinopelvic Geometry in Different Lenke Curve Types of Adolescent Idiopathic Scoliosis. Spine Deform 4, 425–431 (2016). https://doi.org/10.1016/j.jspd.2016.08.003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2016.08.003

Keywords

Navigation