Skip to main content
Log in

Prediction of average surface roughness and formability in single point incremental forming using artificial neural network

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Single point incremental forming (SPIF) is a flexible, innovative, and cheap process for rapid manufacturing of complex sheet metal parts. It is a crucial task for engineers to predict a process when many independent parameters are affecting simultaneously its performance. An artificial neural network (ANN) based prediction model was developed to evaluate average surface roughness (R a) and maximum forming angle (Ø max) while SPIF forming of AA5052-H32 material. A feedforward backpropagation network with Levenberg—Marquardt algorithm was employed to build ANN model. The ANNs (4-n-1, 4-n-2) were generated by introducing different combinations of transfer functions and a number of neurons. The confirmation runs were performed to verify the agreement between the ANN predicted and the experimental results. The developed ANN model (4-n-1) was capable of predicting the process response with an excellent accuracy and resulted in overall R-value, MSE, and MAPE of 0.99807, 0.0209, and 5.96% for R a 0.99913, 0.0281, and 0.003 for Ø max. The optimum 4-n-2 model was built with overall R-value, MSE of 0.99999 and 0.057194, respectively. Hence, it was found that the engineering efforts may be reduced in the SPIF process with successful ANN model implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Buffa, D. Campanella, L. Fratini, On the improvement of material formability in SPIF operation through tool stirring action, Int. J. Adv. Manuf. Technol. 66 (2013) 1343–1351.

    Article  Google Scholar 

  2. X. Ziran, L. Gao, G. Hussain, Z. Cui, The performance of flat end and hemispherical end tools in single-point incremental forming, Int. J. Adv. Manuf. Technol. 46 (2010) 1113–1118.

    Article  Google Scholar 

  3. G. Hussain, L. Gao, Z.Y. Zhang, Formability evaluation of a pure titanium sheet in the cold incremental forming process, Int. J. Adv. Manuf. Technol. 37 (2008) 920–926.

    Article  Google Scholar 

  4. G. Ambrogio, L. Filice, F. Guerriero, R. Guido, D. Umbrello, Prediction of incremental sheet forming process performance by using a neural network approach, Int. J. Adv. Manuf. Technol. 54 (2011) 921–930.

    Article  Google Scholar 

  5. Z. Liu, S. Liu, Y. Li, P. Meehan, Modelling and optimization of surface roughness in incremental sheet forming using a multi-objective function, Mater. Manuf. Process. 29 (2014) 808–818.

    Article  Google Scholar 

  6. M. Durante, a. Formisano, A. Langella, F.M. Capece Minutolo, The influence of tool rotation on an incremental forming process, J. Mater. Process. Technol. 209 (2009) 4621–4626.

    Article  Google Scholar 

  7. N.G. Azevedo, J.S. Farias, R.P. Bastos, P. Teixeira, J.P. Davim, R. J. Alves de Sousa, Lubrication aspects during single point incremental forming for steel and aluminum materials, Int. J. Precis. Eng. Manuf. 16 (2015) 589–595.

    Article  Google Scholar 

  8. M. Ham, J. Jeswiet, Single point incremental forming limits using a Box-Behnken design of experiment, Key Eng. Mater. 344 (2007) 629–636.

    Article  Google Scholar 

  9. I. Cerro, E. Maidagan, J. Arana, a. Rivero, P.P. Rodriguez, Theoretical and experimental analysis of the dieless incremental sheet forming process, J. Mater. Process. Technol. 177 (2006) 404–408.

    Article  Google Scholar 

  10. S.P. Shanmuganatan, V.S. Senthil Kumar, Experimental investigation and finite element modeling on profile forming of conical component using Al 3003(0) alloy, Mater. Des. 36 (2012) 564–569.

    Article  Google Scholar 

  11. S. Golabi, H. Khazaali, Determining frustum depth of 304 stainless steel plates with various diameters and thicknesses by incremental forming, J. Mech. Sci. Technol. 28 (2014) 3273–3278.

    Article  Google Scholar 

  12. Z. Cui, Z. Cedric Xia, F. Ren, V. Kiridena, L. Gao, Modeling and validation of deformation process for incremental sheet forming, J. Manuf. Process. 15 (2013) 236–241.

    Article  Google Scholar 

  13. M. Bambach, B. Taleb Araghi, G. Hirt, Strategies to improve the geometric accuracy in asymmetric single point incremental forming, Prod. Eng. 3 (2009) 145–156.

    Article  Google Scholar 

  14. A. Attanasio, E. Ceretti, C. Giardini, L. Mazzoni, Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization, J. Mater. Process. Technol. 197 (2008) 59–67.

    Article  Google Scholar 

  15. Y.H. Kim, J.J. Park, Effect of process parameters on formability in incremental forming of sheet metal, J. Mater. Process. Technol. 130–131 (2002) 42–46.

    Article  Google Scholar 

  16. M.S. Shim, J.J. Park, The formability of aluminium sheet in incremental forming, J. Mater. Process. Technol. 113 (2001) 654–658.

    Article  Google Scholar 

  17. V. Mugendiran, A. Gnanavelbabu, R. Ramadoss, Parameter optimization for surface roughness and wall thickness on AA5052 aluminium alloy by incremental forming using response surface methodology, Procedia Eng. 97 (2014) 1991–2000.

    Article  Google Scholar 

  18. F.C. Minutolo, M. Durante, A. Formisano, A. Langella, Evaluation of the maximum slope angle of simple geometries carried out by incremental forming process, J. Mater. Process. Technol. 193 (2007) 145–150.

    Article  Google Scholar 

  19. M.J. Mirnia, B. Mollaei Dariani, H. Vanhove, J.R. Duflou, Thickness improvement in single point incremental forming deduced by sequential limit analysis, Int. J. Adv. Manuf. Technol. 70 (2014) 2029–2041.

    Article  Google Scholar 

  20. J.R. Duflou, B. Callebaut, J. Verbert, H. De Baerdemaeker, Improved SPIF performance through dynamic local heating, Int. J. Mach. Tools Manuf. 48 (2008) 543–549.

    Article  Google Scholar 

  21. J.J. Park, Y.H. Kim, Fundamental studies on the incremental sheet metal forming technique, J. Mater. Process. Technol. 140 (2003) 447–453.

    Article  Google Scholar 

  22. G. Hussain, L. Gao, N. Hayat, L. Qijian, The effect of variation in the curvature of part on the formability in incremental forming: an experimental investigation, Int. J. Mach. Tools Manuf. 47 (2007) 2177–2181.

    Article  Google Scholar 

  23. A. Bhattacharya, K. Maneesh, N. Venkata Reddy, J. Cao, Formability and surface finish studies in single point incremental forming, J. Manuf. Sci. Eng. 133 (2011) 061020, https://doi.org/10.1115/l.4005458.

    Article  Google Scholar 

  24. B. Riadh, A. Henia, B. Hedi, Application of response surface analysis and genetic algorithm for the optimization of single point incremental forming process, Key Eng. Mater. 557 (2013) 1265–1272.

    Google Scholar 

  25. Z. Liu, Y. Li, P.A. Meehan, Experimental investigation of mechanical properties, formability and force measurement for AA7075-O aluminum alloy sheets formed by incremental forming, Int. J. Precis. Eng. Manuf. 14 (2013) 1891–1899.

    Article  Google Scholar 

  26. S. Kurra, S.P. Regalia, Experimental and numerical studies on formability of extra-deep drawing steel in incremental sheet metal forming, Integr. Med. Res. 3 (2014) 158–171.

    Google Scholar 

  27. S. Kurra, N.H. Rahman, S.P. Regalla, A.K. Gupta, Modeling and optimization of surface roughness in single point incremental forming process, J. Mater. Res. Technol. 4 (2015) 304–313.

    Article  Google Scholar 

  28. V. Gulati, A. Aryal, P. Katyal, A. Goswami, Process parameters optimization in single point incremental forming, J. Inst. Eng. (India): Ser. C 97 (2015) 221–229.

    Google Scholar 

  29. G. Palumbo, M. Brandizzi, Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed, Mater. Des. 40 (2012) 43–51.

    Article  Google Scholar 

  30. A. Mulay, S. Ben, S. Ismail, A. Kocanda, Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments, J. Braz. Soc. Mech. Sci. Eng. (2017), https://doi.org/10.1007/S40430-016-0703-7.

  31. M. Honarpisheh, M. Jobedar, M. Alinaghian, Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology, Int. J. Adv. Manuf. Technol. 96 (2018) 3069–3080.

    Article  Google Scholar 

  32. G. Liu, Z. Li, Single point incremental forming of Cu-Al composite sheets: a comprehensive study on deformation behaviors, Arch. Civ. Mech. Eng. 19 (2019) (2019) 484–502.

    Article  Google Scholar 

  33. A. Kumar, V. Gulati, Experimental investigation and optimisation of surface roughness in negative incremental forming, Measurement 131 (2019) 419–430.

    Article  Google Scholar 

  34. S. Park, C.G Lee, H.N. Han, S.-J. Kim, K. Chung, Improvement of the drawability based on the surface friction stir process of AA5052-H32 automotive sheets, Met. Mater. Int. 14 (2008) 47–57.

    Article  Google Scholar 

  35. M. Mia, N. Ranjan, Prediction of surface roughness in hard turning under high pressure coolant using artificial neural network, Measurement 92 (2016) 464–474.

    Article  Google Scholar 

  36. M.T. Hagan, M.B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw. 5 (1994) 2–6.

    Article  Google Scholar 

  37. M.R. Thakker, J.K. Parikh, M.A. Desai, Microwave assisted extraction of essential oil from the leaves of Palmarosa: multi-response optimization and predictive modelling, Ind. Crops Prod. 86 (2016) 311–319.

    Article  Google Scholar 

  38. A. Chakraborty, S. Roy, R. Banerjee, An experimental based ANN approach in mapping performance- emission characteristics of a diesel engine operating in dual-fuel mode with LPG, J. Nat. Gas Sci. Eng. 28 (2016) 15–30.

    Article  Google Scholar 

  39. T.T. Nguyen, Y.S. Yang, K.Y. Bae, S.N. Choi, Prediction of deformations of steel plate by artificial neural network in forming process with induction heating, J. Mech. Sci. Technol. 23 (2009) 1211–1221.

    Article  Google Scholar 

  40. S. Roy, R. Banerjee, A.K. Das, P.K. Bose, Development of an ANN based system identification tool to estimate the performance-emission characteristics of a CRDI assisted CNG dual fuel diesel engine, J. Nat. Gas Sci. Eng. 21 (2014) 147–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrut Mulay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulay, A., Ben, B.S., Ismail, S. et al. Prediction of average surface roughness and formability in single point incremental forming using artificial neural network. Archiv.Civ.Mech.Eng 19, 1135–1149 (2019). https://doi.org/10.1016/j.acme.2019.06.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2019.06.004

Keywords

Navigation