Skip to main content
Log in

Effects of superimposed hydrostatic pressure on bulging deformation and fracture of tubes in double-sided hydroforming

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Finite element analysis and scanning electron microscope were conducted to investigate the bulging deformation and fracture of tubes in double-sided hydroforming. The effect of the external pressure imposed on the tube, which determines the magnitude of superimposed hydrostatic pressure, on the stress state, yield locus, fracture surface formation, and fracture strain was evaluated. The simulation results revealed that sufficiently high external pressure can change the stress state of the tube in double-sided hydroforming from an in-plane biaxial tensile stress state to a three-dimensional stress state, and it can increase its hydrostatic pressure in a superimposed manner. Moreover, double-sided free bulging and corner filling experiments were conducted on 5A02 aluminum alloy and 2A12 aluminum alloy tubes. It was found that the external pressure has a significant impact on the fracture behavior of these tubes. The increasing external pressure could change the type, number, size, and proportion of the dimples on the fractured surface, and transform the fracture mode from a void accumulation fracture to a pure shear fracture, which significantly improves the fracture limit of the tubes. These results are significant for the consolidation of the theoretical and numerical simulation prediction of the superimposed hydrostatic pressure effect in the hydroforming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bihamta, Q.-H. Bui, M. Guillot, G. D’Amours, A. Rahem, M. Fafard, Global optimisation of the production of complex aluminium tubes by the hydroforming process, CIRP J. Manuf. Sci. Technol. 9 (2015) 1–11. http://dx.doi.org/10.1016/j.cirpj.2015.02.001.

    Article  Google Scholar 

  2. H.Y. Li, X.S. Wang, S.J. Yuan, Q.B. Miao, Z.R. Wang, Typical stress states of tube hydroforming and their distribution on the yield ellipse, J. Mater. Process. Technol. 151 (2004) 345–349. http://dx.doi.org/10.1016/j.jmatprotec.2004.04.085.

    Article  Google Scholar 

  3. E. Chu, Y. Xu, Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes, Int. J. Mech. Sci. 46 (2004) 263–283. http://dx.doi.org/10.1016/j.ijmecsci.2004.02.014.

    Article  Google Scholar 

  4. Y.P. Korkolis, S. Kyriakides, Inflation and burst of anisotropic aluminum tubes for hydroforming applications, Int. J. Plast. 24 (2008) 509–543. http://dx.doi.org/10.1016/j.ijplas.2007.07.010.

    Article  Google Scholar 

  5. M. Liewald, R. Pop, Magnesium tube hydroforming, Materwiss. Werksttech. 39 (2008) 343–348. http://dx.doi.org/10.1002/mawe.200800303.

    Article  Google Scholar 

  6. A.A. Luo, A.K. Sachdev, 11 – Bending and hydroforming of aluminum and magnesium alloy tubes, in: M. Koç (Ed.), Hydroforming Adv. Manuf., Woodhead Publishing, 2008 238–266. http://dx.doi.org/10.1533/9781845694418.2.238.

    Chapter  Google Scholar 

  7. X. Guo, F. Ma, Q. Guo, X. Luo, N. Kim, K. Jin, A calculating method of tube constants of ductile fracture criteria in tube free bulging process based on M-K theory, Int. J. Mech. Sci. (2017), http://dx.doi.org/10.1016/j.ijmecsci.2017.04.012.

  8. Y. Lou, H. Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter, Int. J. Solids Struct. 50 (2013) 447–455. http://dx.doi.org/10.1016/j.ijsolstr.2012.10.007.

    Article  Google Scholar 

  9. P.W. Bridgman, Studies in Large Plastic Flow and Fracture, With Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill, New York, 1952, http://dx.doi.org/10.4159/harvard.9780674731349.

    MATH  Google Scholar 

  10. J.J. Lewandowski, P. Lowhaphandu, Effects of hydrostatic pressure on mechanical behaviour and deformation processing of materials, Int. Mater. Rev. 43 (1998) 145–187. http://dx.doi.org/10.1179/imr.1998.43.4.145.

    Article  Google Scholar 

  11. J.A. Sauer, D.R. Mears, K.D. Pae, Effects of hydrostatic pressure on the mechanical behaviour of polytetrafluoroethylene and polycarbonate, Eur. Polym. J. 6 (1970) 1015–1032. http://dx.doi.org/10.1016/0014-3057(70)90034-0.

    Article  Google Scholar 

  12. I.E. French, P.F. Weinrich, C.W. Weaver, Tensile fracture of free machining brass as a function of hydrostatic pressure, Acta Metall. 21 (1973) 1045–1049. http://dx.doi.org/10.1016/0001-6160(73)90020-5.

    Article  Google Scholar 

  13. I.E. French, P.F. Weinrich, The influence of hydrostatic pressure on the tensile deformation and fracture of copper, Metall. Trans. A 6 (1975) 785, http://dx.doi.org/10.1007/BF02672300.

    Article  Google Scholar 

  14. A. Brownrigg, W.A. Spitzig, O. Richmond, D. Teirlinck, J.D. Embury, The influence of hydrostatic pressure on the flow stress and ductility of a spherodized 1045 steel, Acta Metall. 31 (1983) 1141–1150. http://dx.doi.org/10.1016/0001-6160(83)90176-1.

    Article  Google Scholar 

  15. D.S. Liu, J.J. Lewandowski, The effects of superimposed hydrostatic pressure on deformation and fracture: Part I. Monolithic 6061 aluminum, Metall. Trans. A 24 (1993) 601–608. http://dx.doi.org/10.1007/BF02656629.

    Article  Google Scholar 

  16. J. Peng, P.D. Wu, Y. Huang, X.X. Chen, D.J. Lloyd, J.D. Embury, K.W. Neale, Effects of superimposed hydrostatic pressure on fracture in round bars under tension, Int. J. Solids Struct. 46 (2009) 3741–3749. http://dx.doi.org/10.1016/j.ijsolstr.2009.07.001.

    Article  Google Scholar 

  17. P.D. Wu, X.X. Chen, D.J. Lloyd, J.D. Embury, Effects of superimposed hydrostatic pressure on fracture in sheet metals under tension, Int. J. Mech. Sci. 52 (2010) 236–244. http://dx.doi.org/10.1016/j.ijmecsci.2009.09.14.

    Article  Google Scholar 

  18. F.J. Fuchs, Hydrostatic pressure: its role in metal forming, Mech. Eng. (1966) 34–40.

  19. L.M. Smith, S. Ganeshmurthy, K. Alladi, Double-sided high-pressure tubular hydroforming, J. Mater. Process. Technol. 142 (2003) 599–608. http://dx.doi.org/10.1016/S0924-0136(02)01041-5.

    Article  Google Scholar 

  20. F. Zhang, J. Chen, J. Chen, X. Zhu, Forming limit model evaluation for anisotropic sheet metals under through-thickness normal stress, Int. J. Mech. Sci. 89 (2014) 40–46. http://dx.doi.org/10.1016/j.ijmecsci.2014.08.016.

    Article  Google Scholar 

  21. J.M. Allwood, D.R. Shouler, Generalised forming limit diagrams showing increased forming limits with non-planar stress states, Int. J. Plast. 25 (2009) 1207–1230. http://dx.doi.org/10.1016/j.ijplas.2008.11.001.

    Article  Google Scholar 

  22. X.-L. Cui, X.-S. Wang, S.-J. Yuan, Deformation analysis of double-sided tube hydroforming in square-section die, J. Mater. Process. Technol. 214 (2014), http://dx.doi.org/10.1016/j.jmatprotec.2014.02.005.

  23. X.-L. Cui, X.-S. Wang, S.-J. Yuan, The bulging behavior of thick-walled 6063 aluminum alloy tubes under double-sided pressures, JOM 67 (2015), http://dx.doi.org/10.1007/s11837-015-1291-1.

  24. X.L. Cui, X.S. Wang, S.J. Yuan, Experimental verification of the influence of normal stress on the formability of thin-walled 5A02 aluminum alloy tubes, Int. J. Mech. Sci. 88 (2014) 232–243. http://dx.doi.org/10.1016/j.ijmecsci.2014.07.011.

    Article  Google Scholar 

  25. Y. Shi, H. Jin, P.D. Wu, D.J. Lloyd, Effects of superimposed hydrostatic pressure on necking and fracture of tube under hydroforming, Int. J. Solids Struct. (2017), http://dx.doi.org/10.1016/j.ijsolstr.2017.02.027.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Lei Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, XL., Yuan, SJ. Effects of superimposed hydrostatic pressure on bulging deformation and fracture of tubes in double-sided hydroforming. Archiv.Civ.Mech.Eng 19, 569–583 (2019). https://doi.org/10.1016/j.acme.2018.12.012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2018.12.012

Keywords

Navigation