Skip to main content
Log in

The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures

  • Published:
JOM Aims and scope Submit manuscript

Abstract

To make further exploration on the deformation behavior of tube under double-sided pressures, the thick-walled 6063 aluminum alloy tubes with an outer diameter of 65 mm and an average thickness of 7.86 mm have been used to be bulged under the combined action of internal and external pressures. In the experiment, two ends of the thick-walled tubes were fixed using the tooth and groove match. Three levels of external pressure (0 MPa, 40 MPa, and 80 MPa), in conjunction with the internal pressure, were applied on the tube outside and inside simultaneously. The effect of external pressure on the bulging behavior of the thick-walled tubes, such as the limiting expansion ratio, the bulging zone profile, and the thickness distribution, has been investigated. It is shown that the limiting expansion ratio, the bulging zone profile, and the thickness distribution in the homogeneous bulging area are all insensitive to the external pressure. However, the external pressure can make the thick-walled tube achieve a thinner wall at the fracture area. It reveals that the external pressure can only improve the fracture limit of the thick-walled 6063 tubes, but it has very little effect on their homogeneous bulging behavior. It might be because the external pressure can only increase the magnitude of the hydrostatic pressure for the tube but has no effect on the Lode parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Constantine, R. Roth, and J.P. Clark, JOM 53, 33 (2001).

    Article  Google Scholar 

  2. A.I. Taub, P.E. Krajewski, A.A. Luo, and J.N. Owens, JOM 59, 48 (2007).

    Article  Google Scholar 

  3. M. Koç and T. Altan, J. Mater. Process Technol. 108, 384 (2001).

    Article  Google Scholar 

  4. A. Alaswad, K.Y. Benyounis, and A.G. Olabi, Mater. Des. 33, 328 (2012).

    Article  Google Scholar 

  5. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng. A-Struct. 280, 37 (2000).

    Article  Google Scholar 

  6. J. Hirsch and T. Al-Samman, Acta Mater. 61, 818 (2013).

    Article  Google Scholar 

  7. F.J. Fuchs, W. Electric, and N.J. Princeton, Mech. Eng. 88, 34 (1966).

  8. L.M. Smith, S. Ganeshmurthy, and K. Alladi, J. Mater. Process Technol. 142, 599 (2003).

    Article  Google Scholar 

  9. N. Jain and J. Wang, Int. J. Mater. Prod. Technol. 21, 200 (2004).

    Article  Google Scholar 

  10. N. Jain, J. Wang, and R. Alexander, J. Mater. Process Technol. 145, 59 (2004).

    Article  Google Scholar 

  11. N. Jain and J. Wang, Int. J. Mech. Sci. 47, 1827 (2005).

    Article  MATH  Google Scholar 

  12. U. Guven, P. I. Mech. Eng. B.-J. Eng. 223, 1361 (2009).

    Google Scholar 

  13. M. Gotoh, T. Chung, and N. Iwata, JSME Int. J. A-Solid Mech. 38, 123 (1995).

    Google Scholar 

  14. L.M. Smith, R.C. Averill, J.P. Lucas, T.B. Stoughton, and P.H. Matin, Int. J. Plast. 19, 1567 (2003).

    Article  MATH  Google Scholar 

  15. P.H. Matin and L.M. Smith, Int. J. Plast. 21, 671 (2005).

    Article  MATH  Google Scholar 

  16. D. Banabic and S. Soare, Paper presented at Numisheet 2008 (Interlaken, Switzerland, 2008), pp. 199–204.

  17. J.M. Allwood and D.R. Shouler, Int. J. Plast. 25, 1207 (2009).

    Article  MATH  Google Scholar 

  18. A. Assempour, H.K. Nejadkhaki, and R. Hashemi, Comp. Mater. Sci. 48, 504 (2010).

    Article  Google Scholar 

  19. M. Nurcheshmeh and D.E. Green, Int. J. Mater. Form. 5, 213 (2012).

    Article  Google Scholar 

  20. M. Nurcheshmeh and D.E. Green, Int. J. Mech. Sci. 82, 131 (2014).

    Article  Google Scholar 

  21. J. Liu, Z. Wang, and Q. Meng, J. Mater. Eng. Perform. 21, 429 (2012).

    Article  Google Scholar 

  22. X.L. Cui, X.S. Wang, and S.J. Yuan, J. Mater. Process Technol. 214, 1341 (2014).

    Article  Google Scholar 

  23. X.L. Cui, X.S. Wang, and S.J. Yuan, Int. J. Mech. Sci. 88, 232 (2014).

    Article  Google Scholar 

  24. J.J. Lewandowski and P. Lowhaphandu, Int. Mater. Rev. 43, 145 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1229), the National Natural Science Foundation of China (No. 50975061) and the Fundamental Research Funds for the Central Universities (HIT.NSRIF.201134). The authors would like to express their gratitude to the funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Lei Cui or Xiao-Song Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, XL., Wang, XS. & Yuan, SJ. The Bulging Behavior of Thick-Walled 6063 Aluminum Alloy Tubes Under Double-Sided Pressures. JOM 67, 909–915 (2015). https://doi.org/10.1007/s11837-015-1291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1291-1

Keywords

Navigation