Skip to main content

Advertisement

Log in

Dynamic compressive mechanical behaviour and modelling of basalt-polypropylene fibre-reinforced concrete

  • Original Research Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Dynamic compressive behaviour of basalt-polypropylene fibre-reinforced concrete (BPFRC) was experimentally investigated using a 75-mm-diameter split-Hopkinson pressure bar. The results showed that the addition of basalt fibre (BF) and polypropylene fibre (PF) is effective at improving the impact-resistance behaviour of concrete. The dynamic compressive strength, critical strain, and energy absorption capacity of BPFRC increased with increasing strain rate. At strain rates of 20–140 s−1, the addition of BF and PF significantly increased the dynamic compressive strength, critical strain, and energy absorption capacity of concrete. The dynamic increase factor of BPFRC increased linearly with the decimal logarithm of strain rate. The hybrid addition of BF and PF significantly improved the strain rate effect of the dynamic compressive strength. The strengthening and toughening mechanisms of BF and PF are discussed in detail. The proposed dynamic damage constitutive model can be used to accurately describe the dynamic stress–strain relationship of BPFRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Zhang, Y.S. Zhang, Research on the static and dynamic compressive properties of high performance cementitious composite (HPCC) containing coarse aggregate, Arch. Civil Mech. Eng. 15 (2015) 711–720.

    Article  Google Scholar 

  2. W.G. Li, Z.Y. Luo, C. Long, C.Q. Wu, W.H. Duan, S.P. Shah, Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading, Mater. Des. 112 (2016) 58–66.

    Article  Google Scholar 

  3. Z.M. Wu, C.J. Shi, W. He, D.H. Wang, Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements, Cem. Concr. Compos. 79 (2017) 148–157.

    Article  Google Scholar 

  4. J.Z. Lai, W. Sun, Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite, Cem. Concr. Res. 39 (11) (2009) 1044–1051.

    Article  Google Scholar 

  5. H.Y. Su, J.Y. Xu, W.B. Ren, Mechanical properties of ceramic fiber-reinforced concrete under quasi-static and dynamic compression, Mater. Des. 57 (2014) 426–434.

    Article  Google Scholar 

  6. J. Branston, S. Das, S.Y. Kenno, C. Taylor, Mechanical behaviour of basalt fibre reinforced concrete, Constr. Build. Mater. 124 (2016) 878–886.

    Article  Google Scholar 

  7. C.H. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete, Mater. Des. 58 (2014) 187–193.

    Article  Google Scholar 

  8. J.S. Sim, C.W. Park, D.Y. Moon, Characteristics of basalt fiber as a strengthening material for concrete structures, Compos. Part B: Eng. 36 (6–7) (2005) 504–512.

    Article  Google Scholar 

  9. M. Hsie, C.J. Tu, P.S. Song, Mechanical properties of polypropylene hybrid fiber-reinforced concrete, Mater. Sci. Eng.: A 494 (2008) 153–157.

    Article  Google Scholar 

  10. A.M.L. Buendía, M.D.R. Sánchez, V. Climent, C. Guillem, Surface treated polypropylene (PP) fibres for reinforced concrete, Cem. Concr. Res. 54 (2013) 29–35.

    Article  Google Scholar 

  11. C.X. Qian, P. Stroeven, Development of hybrid polypropylene-steel fibre-reinforced concrete, Cem. Concr. Res. 30 (1) (2000) 63–69.

    Article  Google Scholar 

  12. M. Nili, V. Afroughsabet, The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete, Mater. Sci. Eng.: A 531 (2012) 107–111.

    Article  Google Scholar 

  13. D.Y. Yoo, N. Banthia, Mechanical properties of ultra-highperformance fiber-reinforced concrete: A review, Cem. Concr. Compos. 73 (2016) 267–280.

    Article  Google Scholar 

  14. Y.A. Salloum, T. Almusallam, S.M. Ibrahim, H. Abbas, S. Alsayed, Rate dependent behavior and modeling of concrete based on SHPB experiments, Cem. Concr. Compos. 55 (2015) 34–44.

    Article  Google Scholar 

  15. P. Rossi, E. Toutlemonde, Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms, Mater. Struct. 29 (1996) 116–118.

    Article  Google Scholar 

  16. W.M. Li, J.Y. Xu, Strengthening and toughening in basalt fiber-reinforced concrete, J. Chin. Ceram. Soc. 36 (4) (2008) 476–481.

    MathSciNet  Google Scholar 

  17. W.M. Li, J.Y. Xu, Dynamic behavior and constitutive model of basalt fiber reinforced concrete under impact loading, Eng. Mech. 26 (1) (2009) 86–91.

    Article  Google Scholar 

  18. W.M. Li, J.Y. Xu, Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar, Mater. Sci. Eng.: A 513–514 (2009) 145–153.

    Google Scholar 

  19. W.M. Li, J.Y. Xu, L.J. Shen, Q. Li, Dynamic mechanical properties of basalt fiber reinforced concrete using a split Hopkinson pressure bar, Acta Mater. Compos. Sin. 25 (2) (2008) 135–142.

    Google Scholar 

  20. H. Zhang, Y.W. Gao, F. Li, F. Lu, Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate, J. Central South Univ. (Sci. Technol.) 44 (8) (2013) 3464–3473.

    Google Scholar 

  21. J.S. Hu, X.M. Yang, Z.S. Zhou, D.G. Tang, Experimental study on tenacity increase characteristics of steel fiber reinforced concrete and polypropylene fiber reinforced concrete under impact load, J. Build. Struct. 26 (2) (2005) 101–105.

    Google Scholar 

  22. H.Y. Su, J.Y. Xu, E.L. Bai, Z.G. Gao, Y. Chen, Study of impact mechanical response and statistical damage constitutive model of ceramic fiber reinforced concrete, Eng. Mech. 30 (6) (2013) 148–153.

    Google Scholar 

  23. J.K. Zhou, X.D. Chen, Stress–strain behavior and statistical continuous damage model of cement mortar under high strain rates, J. Mater. Civil Eng. 25 (1) (2013) 120–130.

    Article  Google Scholar 

  24. X.D. Chen, S.X. Wu, J.K. Zhou, Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete, Constr. Build. Mater. 47 (2013) 419–430.

    Article  Google Scholar 

  25. Chinese National Standard, Test method of mechanical properties on ordinary concrete, GB/T 50081-2002, Beijing, China, 2002.

  26. Q.M. Li, H. Meng, About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test, Int. J. Solids Struct. 40 (2) (2003) 343–360.

    Article  Google Scholar 

  27. V.T. Giner, F.J. Baeza, S. Ivorra, E. Zornoza, ó. Galao, Effect of steel and carbon fiber additions on the dynamic properties of concrete containing silica fume, Mater. Des. 34 (2012) 332–339.

    Article  Google Scholar 

  28. P. Garcés, J. Fraile, D. Vilaplana-Ortego, D. Cazorla-Amorós, E. G. Alcocel, L.G. Andión, Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced Portland cement mortars, Cem. Concr. Res. 35 (2) (2005) 324–331.

    Article  Google Scholar 

  29. N. Ranjbar, S. Talebian, M. Mehrali, C. Kuenzel, et al., Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites, Compos. Sci. Technol. 122 (2016) 73–81.

    Article  Google Scholar 

  30. C.A. Ross, D.M. Jerome, J.W. Tedesco, M.L. Hughes, Moisture and strain rate effects on concrete strength, ACI Mater. J. 93 (3) (1996) 293–298.

    Google Scholar 

  31. W. Wu, W.D. Zhang, G.W. Ma, Mechanical properties of copper slag reinforced concrete under dynamic compression, Constr. Build. Mater. 24 (6) (2010) 910–917.

    Article  Google Scholar 

  32. X.Q. Zhou, H. Hao, Modelling of compressive behaviour of concrete-like materials at high strain rate, Int. J. Solids Struct. 45 (17) (2008) 4648–4661.

    Article  Google Scholar 

  33. Y. Gao, J.Y. Xu, E.L. Bai, X. Luo, J.S. Zhu, L.X. Nie, Static and dynamic mechanical properties of high early strength alkali activated slag concrete, Ceram. Int. 41 (2015) 12901–12909.

    Article  Google Scholar 

  34. H.Y. Su, J.Y. Xu, W.B. Ren, Mechanical properties of geopolymer concrete exposed to dynamic compression under elevated temperatures, Ceram. Int. 42 (2016) 3888–3898.

    Article  Google Scholar 

  35. P.H. Bischoff, S.H. Perry, Compressive behavior of concrete at high strain rates, Mater. Struct. 24 (1991) 45–50.

    Article  Google Scholar 

  36. J.P. Romualdi, J.A. Mandel, Tensile strength of concrete affected by uniformly dispersed and closely spaced short length of wire reinforcement, ACI J. Proc. 61 (6) (1964) 657–671.

    Google Scholar 

  37. L.H. Chang, J.K. Chen, Experimental study on constitutive relation of cement mortar, J. Hydraul. Eng. 38 (2) (2007) 217–220.

    MathSciNet  Google Scholar 

  38. L.X. Xie, G.M. Zhao, X.R. Meng, Research on damage viscoelastic dynamic constitutive model of soft rock and concrete materials, Chin. J. Rock Mech. Eng. 32 (4) (2013) 857–864.

    Google Scholar 

  39. Z.L. Wang, Y.S. Liu, R.F. Shen, Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression, Constr. Build. Mater. 22 (5) (2008) 811–819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Niu, D., Zhang, J. et al. Dynamic compressive mechanical behaviour and modelling of basalt-polypropylene fibre-reinforced concrete. Archiv.Civ.Mech.Eng 18, 914–927 (2018). https://doi.org/10.1016/j.acme.2018.01.016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.acme.2018.01.016

Keywords

Navigation