Skip to main content

Advertisement

Log in

Dynamic splitting tensile behaviour and statistical scaling law of hybrid basalt‒polypropylene fibre-reinforced concrete

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The dynamic splitting tensile behaviour of hybrid basalt‒polypropylene fibre-reinforced concrete (HBPRC) was investigated, and the reinforcing mechanism of the fibres was explored. The results indicate that the dynamic splitting tensile strength and dynamic energy dissipation capacity of HBPRC increased with strain rate. The effects of fibre type and content on the strain rate sensitivity of dynamic splitting tensile strength were consistent with that of dynamic dissipation energy. Furthermore, the dynamic splitting tensile strength of concrete was improved by adding appropriate content of basalt fibre (BF) and polypropylene fibre (PF), and the improving effect of hybrid BF and PF was the most significant. Excess fibres reduced the dynamic splitting tensile strength at low strain rates but improved it at high strain rates. The addition of fibres improved the dynamic dissipation energy and the impact resistance of concrete. With an increase in the strain rate, the pull-out lengths of BF and PF decreased gradually. When using hybrid BF and PF, the failure morphology of BF did not change considerably, although PF underwent more severe damage. Based on the weakest-link theory, a calculation model for the statistical scaling law of dynamic splitting tensile strength considering the strain rate effect was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Walton PL, Majumdar AJ. Cement-based composites with mixtures of different types of fibres. Compos. 1975;6(5):209–16.

    Article  CAS  Google Scholar 

  2. Choi JI, Lee BY. Bonding properties of basalt fiber and strength reduction according to fiber orientation. Mater. 2015;8(10):6719–27.

    Article  CAS  Google Scholar 

  3. Branston J, Das S, Kenno SY, Taylor C. Mechanical behaviour of basalt fibre reinforced concrete. Constr Build Mater. 2016;124:878–86.

    Article  CAS  Google Scholar 

  4. Fiore V, Scalici T, Di BG, Valenza A. A review on basalt fibre and its composites. Compos Part B Eng. 2015;74:74–94.

    Article  CAS  Google Scholar 

  5. Jiang C, Fan K, Wu F, Chen D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater Des. 2014;58:187–93.

    Article  CAS  Google Scholar 

  6. Li ZX, Li CH, Shi YD, Zhou XJ. Experimental investigation on mechanical properties of hybrid fibre reinforced concrete. Constr Build Mater. 2017;157:930–42.

    Article  Google Scholar 

  7. Lyer P, Kenno SY, Das S. Mechanical properties of fiber-reinforced concrete made with basalt filament fibers. J Mater Civ Eng. 2015;27(11):04015015.

    Article  Google Scholar 

  8. Li M, Gong F, Wu Z. Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete. Constr Build Mater. 2020;245:118424.

    Article  CAS  Google Scholar 

  9. Dilbas H, Çakir Ö. Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete. Constr Build Mater. 2020;254:119216.

    Article  Google Scholar 

  10. Asprone D, Cadoni E, Lucolano F, Prota A. Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cem Concr Compos. 2014;53:52–8.

    Article  CAS  Google Scholar 

  11. Smarzewski P. Influence of basalt-polypropylene fibres on fracture properties of high performance concrete. Compos Struct. 2019;209:23–33.

    Article  Google Scholar 

  12. Wang D, Ju Y, Shen H, Xu L. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Constr Build Mater. 2019;197:464–73.

    Article  CAS  Google Scholar 

  13. Li WM, Xu JY. Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater Sci Eng A. 2009;513–514:145–53.

    Google Scholar 

  14. Zhang H, Gao YW, Li F, Lu F. Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate. J Cent Sout Univ (Sci Tech). 2013;44(8):3464–73.

    CAS  Google Scholar 

  15. Fu Q, Niu D, Zhang J, Huang D, Wang Y, Hong M, Zhang L. Dynamic compressive mechanical behaviour and modelling of basalt-polypropylene fibre-reinforced concrete. Arch Civ Mech Eng. 2018;3(18):914–27.

    Article  Google Scholar 

  16. Fu Q, Xu W, Li D, Li N, Niu D, Zhang L, Guo B, Zhang Y. Dynamic compressive behaviour of hybrid basalt-polypropylene fibre-reinforced concrete under confining pressure: Experimental characterisation and strength criterion. Cem Concr Compos. 2021;118:103954.

    Article  CAS  Google Scholar 

  17. Guo YB, Gao GF, Jing L, Shim VPW. Quasi-static and dynamic splitting of high-strength concretes-tensile stress-strain response and effects of strain rate. Int J Impact Eng. 2019;125:188–211.

    Article  Google Scholar 

  18. Wu MX, Qin C, Zhang CH. High strain rate splitting tensile tests of concrete and numerical simulation by mesoscale particle elements. J Mater Civ Eng. 2014;26(1):71–82.

    Article  ADS  Google Scholar 

  19. Chen X, Ge L, Zhou J, Wu S. Dynamic Brazilian test of concrete using split Hopkinson pressure bar. Mater Struct. 2017;50:1.

    Article  ADS  Google Scholar 

  20. Chen M, Zhong H, Wang H, Zhang M. Behaviour of recycled tyre polymer fibre reinforced concrete under dynamic splitting tension. Cem Concr Compos. 2020;114:103764.

    Article  CAS  Google Scholar 

  21. Khan MZN, Hao Y, Hao H, Shaikh FA. Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension. Cem Concr Compos. 2019;104:103343.

    Article  CAS  Google Scholar 

  22. Zhao X, Li Q, Xu S. Contribution of steel fiber on the dynamic tensile properties of hybrid fiber ultra high toughness cementitious composites using Brazilian test. Constr Build Mater. 2020;246:118416.

    Article  CAS  Google Scholar 

  23. Feng KN, Ruan D, Pan Z, Collins F, Bai Y, Wang CM, Hui W. Effect of strain rate on splitting tensile strength of geopolymer concrete. Mag Concr Res. 2014;66(16):825–35.

    Article  CAS  Google Scholar 

  24. Zhang H, Bai L, Qi Y, Hong H, Neupane A, Pan Q. Impact of splitting tensile properties and dynamic constitutive model of fly ash concrete. J Mater Civ Eng. 2020;32(8):04020225.

    Article  Google Scholar 

  25. Klepacako JR, Brara A. An experimental method for dynamic tensile testing of concrete by spalling. Int J Impact Eng. 2001;25(4):387–409.

    Article  Google Scholar 

  26. Brara A, Klepacako JR. Experimental characterization of concrete in dynamic tension. Mech Mater. 2006;38(3):253–67.

    Article  Google Scholar 

  27. Schuler H, Mayrhofer C, Thoma K. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. Int J Impact Eng. 2006;32(10):1635–50.

    Article  Google Scholar 

  28. Erzar B, Forquim P. An experimental method to determine the tensile strength of concrete at high rates of strain. Exp Mech. 2010;50(7):941–55.

    Article  Google Scholar 

  29. Chen XD, Chen C, Xu LY, Shao Y. Dynamic flexural strength of concrete under high strain rates. Mag Concr Res. 2017;69:109–19.

    Article  Google Scholar 

  30. Asprone D, Cadoni E, Prota A. Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates. ACI Struct J. 2009;106:106–13.

    Google Scholar 

  31. Ross CA, Thompson PY, Tedesco JW. Split-Hopkinson pressure bar tests on concrete and mortar in tension and compression. ACI Mater J. 1989;86:475–81.

    Google Scholar 

  32. Guo H, Tao J, Chen Y, Li D, Jia B, Zhai Y. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Constr Build Mater. 2019;224:504–14.

    Article  CAS  Google Scholar 

  33. Xu Z, Hao H, Li HN. Dynamic tensile behaviour of fibre reinforced concrete with spiral fibres. Mater Des. 2012;42:72–88.

    Article  CAS  Google Scholar 

  34. Xu Z, Hao H, Li HN. Mesoscale modelling of dynamic tensile behaviour of fibre reinforced concrete with spiral fibres. Cem Concr Res. 2012;42(11):1475–93.

    Article  CAS  Google Scholar 

  35. Li X, Zhang Y, Shi C, Chen X. Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension. Constr Build Mater. 2020;259:119796.

    Article  Google Scholar 

  36. Lei W, Yu Z. A statistical approach to scaling size effect on strength of concrete incorporating spatial distribution of flaws. Constr Build Mater. 2016;122:702–13.

    Article  Google Scholar 

  37. Lei WS. A generalized weakest-link model for size effect on strength of quasi-brittle materials. J Mater Sci. 2018;53:1227–45.

    Article  ADS  CAS  Google Scholar 

  38. Lei W, Qian G, Yu Z, Berto F. Statistical size scaling of compressive strength of quasi-brittle materials incorporating specimen length-to-diameter ratio effect. Theor Appl Fract Mech. 2019;104:102345.

    Article  Google Scholar 

  39. Chen X, Wu S, Zhou J. Compressive strength of concrete cores under high strain rates. J Perform Constr Facil. 2015;29(1):06014005.

    Article  Google Scholar 

  40. Li D, Niu D, Fu Q, Luo D. Fractal characteristics of pore structure of hybrid basalt-polypropylene fibre-reinforced concrete. Cem Concr Compos. 2020;109:103555.

    Article  CAS  Google Scholar 

  41. GB, T50081–2002. Testing methods of mechanical properties of normal concrete. China: China Building Materials Academy; 2002.

    Google Scholar 

  42. Chen W, Song B. Split Hopkinson (Kolsky) bar: design, testing and applications. 2011.

  43. Chen D, Liu F, Yang F, Jing L, Feng W, Lv J, Luo Q. Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages. Constr Build Mater. 2018;177:477–98.

    Article  CAS  Google Scholar 

  44. Chen X, Wu S, Zhou J. Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique. J Mater Civ Eng. 2014;26(6):04014005.

    Article  Google Scholar 

  45. Branston J, Das S, Kenno SY, Taylor C. Influence of basalt fibres on free and restrained plastic shrinkage. Cem Concr Compos. 2016;74:182–90.

    Article  CAS  Google Scholar 

  46. Alrshoudi F, Mohammadhosseini H, Tahir MM, Alyousef R, Alghamdi H, Alharbi Y, Alsaif A. Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. J Build Eng. 2020;26:101522.

    Article  Google Scholar 

  47. Sim J, Park C, Moon DY. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos Part B Eng. 2005;36(6–7):504–51.

    Article  Google Scholar 

  48. Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Metselaar HSC, Jumaat MZ. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos Sci Tech. 2016;122:73–81.

    Article  CAS  Google Scholar 

  49. Nili M, Afroughsabet V. The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete. Mater Sci Eng A. 2012;531:107–11.

    Article  CAS  Google Scholar 

  50. Nili M, Afroughsabet V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int J Impact Eng. 2010;37(8):879–86.

    Article  Google Scholar 

  51. Yoo DY, Banthia N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem Concr Compos. 2016;73:267–80.

    Article  CAS  Google Scholar 

  52. Romualdi JP, Mandel JA. Tensile strength of concrete affected by uniformly dispersed and closely spaced short length of wire reinforcement. ACI J Proc. 1964;61(6):657–71.

    Google Scholar 

  53. Yan DM. Experimental and theoretical study on the dynamic properties of concrete Ph.D. thesis, Dalian University of Technology, Dalian, China. 2006.

  54. CEB-FIP, Model code for concrete structures, MC90, Lausanne, Switzerland. 1990.

  55. Malvar LJ, Ross CA. Review of strain rate effects for concrete in tension. ACI Mater J. 1998;96(6):735–9.

    Google Scholar 

  56. Feng W, Liu F, Yang F, Li L, Jing L. Experimental study on dynamic split tensile properties of rubber concrete. Constr Build Mater. 2018;165:675–87.

    Article  Google Scholar 

  57. Lei W. Statistical size scaling of ceramic strength. J Am Ceram Soc. 2019;102:90–7.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51590914, 51608432), Natural Science Foundation of Shaanxi Province (Grant No. 2019JQ-481).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Fu or Gang Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Zhao, X., Zhang, Z. et al. Dynamic splitting tensile behaviour and statistical scaling law of hybrid basalt‒polypropylene fibre-reinforced concrete. Archiv.Civ.Mech.Eng 21, 143 (2021). https://doi.org/10.1007/s43452-021-00294-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00294-4

Keywords

Navigation