Skip to main content
Log in

Function modeling of the infrared organ of “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae)

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Acanthocnemus nigricans is an inconspicuous pyrophilous beetle that approaches forest fires. The beetle is equipped with a pair of unique infrared (IR) receptors on its prothorax that allows it to detect hot surfaces in flight. The IR receptor consists of a little disc bearing about 90 tiny sensilla on its anterior half. The disc sensilla are unique in insects and their functions are largely unknown. Using a 3D reconstruction of the head and thorax we performed case studies to reveal different position-dependent expositions of the IR receptors to incoming radiation. Results show that the spatiotemporal pattern in which different sectors of the disc are exposed provides the beetle with unambiguous information about its current direction to an IR source. As a striking structural element, the disc sensilla contain an electron-dense rod connecting an outer peg to the inner sensory cell. Finite element simulations suggest that the rod serves as a heat conductor directing heat to the thermosensitive cell inside the disc. Thus the disc sensilla can be interpreted as discrete temperature reading points. The resulting pattern of stimulated/deactivated sensilla, therefore, could provide the flying beetle with spatiotemporal information about its current position relative to an IR source. Possible biomimetic perspectives of the findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmitz H, Schmitz A, Trenner S, Bleckmann H. A new type of insect infrared organ of low thermal mass. Naturwissenschaften, 2002, 89, 226–229.

    Article  Google Scholar 

  2. Lawrence J F, Britton E B. Australian Beetles, Melbourne University Press, Melbourne, USA, 1994.

    Google Scholar 

  3. Evans W G. The attraction of insects to forest fires. Tall Timbers Conference on Ecological Animal Control by Habitat Management, 1971, 3, 115–127.

    Google Scholar 

  4. Schmitz H, Schmitz A. Australian fire-beetles. Landscope, Spring, 2002, 36–41.

    Google Scholar 

  5. Sloop K D. A Revision of the North American Buprestid Beetles Belonging to the Genus Melanophila (Coleoptera, Buprestidae). University of California Press, Oakland, USA, 1937, 7, 1–20.

    Google Scholar 

  6. Evans W G. Morphology of the infrared sense organ of Melanophila acuminata (Buprestidae: Coleoptera). Annals of the Entomological Society America, 1966, 59, 873–877.

    Article  Google Scholar 

  7. Schmitz A, Sehrbrock A, Schmitz H. The analysis of the mechanosensory origin of the infrared sensilla in Melanophila acuminata (Coleoptera; Buprestidae) adduces new insight into the transduction mechanism. Arthropod Structure & Development, 2007, 36, 291–303.

    Article  Google Scholar 

  8. Israelowitz M, Kwon J A, Rizvi S W, Gille C, Von Schroeder H P. Mechanism of infrared detection and transduction by beetle melanophila acuminata. Journal of Bionic Engineering, 2011, 8, 129–139.

    Article  Google Scholar 

  9. Schmitz H, Schmitz A, Bleckmann H. Morphology of a thermosensitive multipolar neuron in the infrared organ of Merimna atrata (Coleoptera, Buprestidae). Arthropod Structure & Development, 2001, 30, 99–111.

    Article  Google Scholar 

  10. Schneider E S, Schmitz H. Bimodal innervation of the infrared organ of Merimna atrata (Coleoptera, Buprestidae) by thermo-and mechanosensory units. Arthropod Structure & Development, 2013, 42, 135–142.

    Article  Google Scholar 

  11. Schmitz A, Schatzel H, Schmitz H. Distribution and functional morphology of photomechanic infrared sensilla in flat bugs of the genus Aradus (Heteroptera, Aradidae). Arthropod Structure & Development, 2010, 39, 17–25.

    Article  Google Scholar 

  12. Schmitz A, Gebhardt M, Schmitz H. Microfluidic photomechanic infrared receptors in a pyrophilous flat bug. Naturwissenschaften, 2008, 95, 455–460.

    Article  Google Scholar 

  13. Schmitz A, Schneider E S, Schmitz H. Behaviour of the Australian ‘fire-beetle’ Merimna atrata (Coleoptera: Buprestidae) on burnt areas after bushfires. Records of the Western Australian Museum, 2015, 30, 1–11.

    Article  Google Scholar 

  14. Linsley E G. Attraction of Melanophila beetles by fire and smoke. Journal of Economic Entomology, 1943, 36, 341–342.

    Article  Google Scholar 

  15. Ryle G B. Further notes on the natural history of Melanophila acuminata DeG. Entomologist’s Monthly Magazine, 1923, 59, 1–3.

    Google Scholar 

  16. Wyniger D, Moretti M, Duelli P. Aradus lugubris FALLÈN, 1807 (Hemiptera, Heteroptera, Aradidae) in a chestnut forest of Southern Switzerland after a fire experiment. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 2002, 75, 61–64.

    Google Scholar 

  17. Moretti M, Obrist M K, Duelli P. Arthropod biodiversity after forest fires: Winners and losers in the winter fire regime of the southern Alps. Ecography, 2004, 27, 173–186.

    Article  Google Scholar 

  18. Kreiss E J, Schmitz A, Schmitz H. Morphology of the prothoracic discs and associated sensilla of Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Arthropod Structure & Development, 2005, 34, 419–428.

    Article  Google Scholar 

  19. Kreiss E J, Schmitz A, Schmitz H. Morphology of the prothoracic discs and associated sensilla of Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Arthropod Structure & Development, 2005, 34, 419–428.

    Article  Google Scholar 

  20. Kreiss E J, Schmitz H, Gebhardt M. Electrophysiological characterisation of the infrared organ of the Australian “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 729–739.

    Article  Google Scholar 

  21. Gingl E, Tichy H. Infrared sensitivity of thermoreceptors. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 467–475.

    Article  Google Scholar 

  22. Galushko D, Ermakov N, Karpovski M, Palevski A, Ishay J S. Electrical, thermoelectric and thermophysical properties of hornet cuticle. Semiconductor Science and Technology, 2005, 20, 286–289.

    Article  Google Scholar 

  23. Ishay J S, Litinetsky L, Linsky D, Lusternik V, Voronel A, Pertsis V. Hornet silk: Thermophysical properties. Journal of Thermal Biology, 2002, 27, 7–15.

    Article  Google Scholar 

  24. Ishay J S, Pertsis V. The specific heat of the cuticle and the morphological differences between the brown and yellow cuticles of hornets. Journal of Electron Microscopy, 2002, 51, 401–411.

    Article  Google Scholar 

  25. Vincent J F V, Wegst U G K. Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 2004, 33, 187–199.

    Article  Google Scholar 

  26. Schmitz H, Trenner S. Electrophysiological characterization of the multipolar thermoreceptors in the “fire-beetle” Merimna atrata and comparison with the infared sensilla of Melanophila acuminata (both Coleoptera, Buprestidae). Journal of Comparative Physiology A, 2003, 189, 715–722.

    Article  Google Scholar 

  27. Schmitz H, Mürtz M, Bleckmann H. Responses of the infrared sensilla of Melanophila acuminata (Coleoptera: Buprestidae) to monochromatic infrared stimulation. Journal of Comparative Physiology A, 2000, 186, 543–549.

    Article  Google Scholar 

  28. Gnatzy W, Tautz J. Ultrastructure and mechanical properties of an insect mechanoreceptor: Stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell and Tissue Research, 1980, 213, 441–463.

    Google Scholar 

  29. Bereiter-Hahn J, Maltosy A G, Richards K S. Biology of the Integument, Springer Verlag Berlin Heidelberg, Heidelberg, Germany, 1986, 523–553.

    Book  Google Scholar 

  30. Budzier H, Gerlach G. Thermal Infrared Sensors, John Wiley & Sons, Ltd, Chichester, UK, 2011.

    Book  Google Scholar 

  31. Kahl T, Bousack H, Schneider E S, Schmitz H. Infrared receptors of pyrophilous jewel beetles as model for new infrared sensors. Sensor Review, 2014, 34, 123–134.

    Article  Google Scholar 

  32. Siebke G, Holik P, Schmitz S, Schmitz H, Lacher M, Steltenkamp S. A model for μ-biomimetic thermal infrared sensors based on the infrared receptors of Melanophila acuminata. Bioinspiration & Biomimetics, 2014, 9, 036012.

    Article  Google Scholar 

  33. Bousack H, Kahl T, Schmitz A, Schmitz H. Towards improved airborne fire detection systems using beeltle inspired infrared detection and fire searching strategies. Micromachines, 2015, 6, 718–746.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Schmitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Gong, Y., Yang, D. et al. Function modeling of the infrared organ of “Little Ash Beetle” Acanthocnemus nigricans (Coleoptera, Acanthocnemidae). J Bionic Eng 13, 650–658 (2016). https://doi.org/10.1016/S1672-6529(16)60336-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60336-0

Keyword

Navigation