Skip to main content
Log in

Characterization of Micro-Morphology and Wettability of Lotus Leaf, Waterlily Leaf and Biomimetic ZnO Surface

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to characterize the microrelief and wettability of lotus leaf, waterlily leaf and biomimic ZnO surface with potential engineering applications. The characterizations of morphologies reveal that the top surface of lotus leaf is textured with 4 μm–10 μm size protrusions and 70 nm–100 nm nanorods, while the top surface of waterlily leaf is textured with wrinkle and decorated with concave coin-shaped geometric structure. The wettabilities of water and oil on lotus leaf and waterlily leaf under different surroundings were systematically researched. It is indeed interesting that the leaves of the two typical plants both living in the aquatic habitats possess opposite wettabilities: superhydrophobicity for top surface of lotus leaf (156°) while quasi-superhydrophilicity for top surface of waterlily leaf (15°). We have succeeded in fabricating the superhy-drophobic ZnO nanorods semiconductor material (151°) employing a simple method inspired by the detailed structures and chemical composition of lotus leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang B, Liang W X, Guo Z G, Liu W M. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 2015, 44, 336–361.

    Article  Google Scholar 

  2. Guo Z G, Zhou F, Hao J C, Liu W M. Stable Biomimetic super-hydrophobic engineering materials. Journal of the American Chemical Society, 2005, 127, 15670–15671.

    Article  Google Scholar 

  3. Wang G Y, Guo Z G, Liu W M. Interfacial effects of super-hydrophobic plant surfaces: A review. Journal of Bionic Engineering, 2014, 11, 325–345.

    Article  Google Scholar 

  4. Xin Y, Guo Z G. Robust superhydrophobic zinc oxide film. Chemistry Letters, 2014, 43, 305–306.

    Article  Google Scholar 

  5. Zhao Y J, Gu H C, Xie Z Y, Shum H C, Wang B P, Gu Z Z. Bioinspired multifunctional janus particles for droplet manipulation. Journal of the American Chemical Society, 2013, 135, 54–57.

    Article  Google Scholar 

  6. Heng X, Xiang M M, Lu Z H, Luo C. Branched ZnO wire structures for water collection inspired by cacti. ACS Applied Materials Interfaces, 2014, 6, 8032–8041.

    Article  Google Scholar 

  7. Dong Y, Li J, Shi L, Wang X B, Guo Z G, Liu W M. Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chemical Communications, 2014, 50, 5586–5589.

    Article  Google Scholar 

  8. Wang H and Guo Z G. Design of underwater superoleopho-bic TiOb2 coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales. Applied Physics Letters, 2014, 104, 183703.

    Article  Google Scholar 

  9. Guo Z G, Liu W M, Su B L. Why so strong for the lotus leaf? Applied Physics Letters, 2008, 93, 201909.

    Article  Google Scholar 

  10. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1–8.

    Article  Google Scholar 

  11. Zheng Z J, Wang M L, Wang D J, Duan W J, Wang X, Zheng C C. Preparative separation of alkaloids from Nelumbo nucifera leaves by conventional and pH-zone-refining counter-current chromatography. Journal of Chromatography B, 2010, 878, 1647–1651.

    Article  Google Scholar 

  12. Ma C J, Wang J J, Chu H M, Zhang X X, Wang Z H, Wang H L, Li G. Purification and characterization of aporphine alkaloids from leaves of nelumbo nucifera gaertn and their effects on glucose consumption in 3T3-L1 Adipocytes. International Journal of Molecular Sciences, 2014, 15, 3481–3494.

    Article  Google Scholar 

  13. Ren L Q, Wang S J, Tian X M, Han Z W, Yan L N, Qiu Z M. Non-smooth morphologies of typical plant leaf surfaces and their anti-adhesion effects. Journal of Bionic Engineering, 2007, 4, 33–40.

    Article  Google Scholar 

  14. Extrand C W, Moon S I. Repellency of the lotus leaf: Contact angles, drop retention, and sliding angles. Langmuir, 2014, 30, 8791–8797.

    Article  Google Scholar 

  15. Choi Y, Brugarolas T, Kang S M, Park B J, Kim B S, Lee C S, Lee D. Beauty of lotus is more than skin deep: Highly buoyant superhydrophobic films. ACS Applied Materials Interfaces, 2014, 6, 7009–7013.

    Article  Google Scholar 

  16. Seymour R S, Schultze-Motel P. Thermoregulating lotus flowers. Nature, 1996, 383, 305.

    Article  Google Scholar 

  17. Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal Nanotechnology, 2011, 2, 152–161.

    Article  Google Scholar 

  18. Purkayastha M D, Kalita D, Das V K, Mahanta C L, Thakur A J, Chaudhuri M K. Effects of L-ascorbic acid addition on micro-filtered coconut water: Preliminary quality prediction study using 1H-NMR, FTIR and GC-MS. Innovative Food Science & Emerging Technologies, 2012, 13, 184–199.

    Article  Google Scholar 

  19. Dean J A. Lange’s Handbook of Chemistry (15th ed.), McGraw-Hill Press, New York, USA, 1998.

    Google Scholar 

  20. Nowicka E, Hofmann J P, Parker S F, Sankar M, Lari G M, Kondrat S A, Knight D W, Bethell D, Weckhuysenb B M, Hutchings G J. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics, 2013, 15, 12147–12155.

    Article  Google Scholar 

  21. Norwood M J, Louchouarn P, Kuo L J, Harvey O R. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars. Organic Geochemistry, 2013, 56, 111–119.

    Article  Google Scholar 

  22. Chen C M, Huang J Q, Zhang Q, Gong W Z, Yang Q H, Wang M Z, Yang Y G. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon, 2012, 50, 659–667.

    Article  Google Scholar 

  23. Wagner C D, Riggs W M, Davis L E, Moulder J F. HandBook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Eden Prairie, 1979.

    Google Scholar 

  24. Naumkin A V, Kraut-Vass A, Gaarenstroom S W, Powell C J, NIST X-ray Photoelectron Spectroscopy Database 20, [2012], http://srdata.nist.gov/xps/Default.aspx.

    Google Scholar 

  25. Kowa K W, Yusoff R, Abdul Aziz A R, Abdullah E C. From bamboo leaf to aerogel: Preparation of water glass as a precursor. Journal of Non-Crystalline Solids, 2014, 386, 76–84.

    Article  Google Scholar 

  26. Sait H H, Hussain A, Salema A A, Ani F N. Pyrolysis and combustion kinetics of date palm biomass using thermo-gravimetric analysis. Bioresource Technology, 2012, 118, 382–389.

    Article  Google Scholar 

  27. Yang H P, Yan R, Chen H P, Zheng C G, Lee D H, Zheng C G. In-depth investigation of biomass pyrolysis based on three major components: Hemicelluloses, cellulose and lig-nin. Energy Fuels, 2006, 20, 388–393.

    Article  Google Scholar 

  28. Gao W H, Chen K F, Xiang Z Y, Yang F, Zeng J, Li J, Yang R D, Rao G H, Tao H. Kinetic study on pyrolysis of tobacco residues from the cigarette industry. Industrial Crops and Products, 2013, 44, 152–157.

    Article  Google Scholar 

  29. Varhegyi G, Chen H G, Godoy S. Thermal decomposition of wheat, oat, barley and brassica carinata straws: A kinetic study. Engergy Fuels, 2009, 23, 646–652.

    Article  Google Scholar 

  30. Singh D P, Singh J P. Enhanced evaporation of sessile water droplet on vertically standing Ag nanorods film. The Journal of Physical Chemistry C, 2011, 115, 11914–11919.

    Article  Google Scholar 

  31. McGuiggan P M, Grave D A, Wallace J S, Cheng S F, Prosperetti A, Robbins M O. Dynamics of a disturbed sessile drop measured by atomic force microscopy (AFM). Lang-muir, 2011, 27, 11966–11972.

    Article  Google Scholar 

  32. Guo Z G, Liu W M. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 2007, 172, 1103–1112.

    Article  Google Scholar 

  33. Chu Q W, Liang J, Hao J C. Facile fabrication of a robust super-hydrophobic surface on magnesium alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 118–122.

    Article  Google Scholar 

  34. Ge J, Ye Y D, Yao H B, Zhu X, Wang X, Wu L, Wang J L, Ding H, Yong N, He L H, Yu S H. Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation. Angewandte Chemie International Edition, 2014, 53, 3612–3616.

    Article  Google Scholar 

  35. Zhu X T, Zhang Z Z, Men X H, Yang J, Wang K, Xu X H, Zhou X Y, Xue Q J. Robust superhydrophobic surfaces with mechanical durability and easy repairability. Journal of Materials Chemistry, 2011, 21, 15793–15797.

    Article  Google Scholar 

  36. Zhang J, Liu Y R, Wei Z Y, Zhang J Y. Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air. Applied Surface Science, 2013, 265, 363–368.

    Article  Google Scholar 

  37. Tian D L, Zhang X F, Tian Y, Wu Y, Wang X, Zhai J, Jiang L. Photo-induced wateroil separation based on switchable superhydrophobicity-superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. Journal of Materials Chemistry, 2012, 22, 19652–19657.

    Article  Google Scholar 

  38. Ilegbusi O J, Song H W, Chakrabarti R. Biocompatibility and conductometric property of solgel derived ZnO/PVP nanocomposite biosensor film. Journal of Bionic Engineering, 2010, 7, S30–S35.

    Article  Google Scholar 

  39. Ivanova T, Harizanova A, Koutzarova T, Vertruyen B, Facile deposition of ZnO:Cu films: Structural and optical characterization, Materials Science in Semiconductor Processing, 2015, 30, 561–570.

    Article  Google Scholar 

  40. Deng R, Yao B, Li Y F, Li B H, Zhang Z Z, Zhao H F, Zhang J Y, Zhao D X, Shen D Z, Fan X W, Yang L L, Zhao Q X. Surface morphology, structural and optical properties of polar and non-polar ZnO thin films: A comparative study. Journal of Crystal Growth, 2009, 311, 4398–4401.

    Article  Google Scholar 

  41. Li X B, Ma S Y, Li F M, Yang F C, Liu J, Zhang X L, Zhao Q, Yang X H, Wang C Y, Zhu J, Zhu C T, Wang X. Blue-green and red luminescence from non-polar ZnO: Pb films. Applied Surface Science, 2013, 270, 467–472.

    Article  Google Scholar 

  42. Young T. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 1805, 95, 65–87.

    Article  Google Scholar 

  43. Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936, 28, 988–994.

    Article  Google Scholar 

  44. Wang B, Zhang Y B, Shi L, Li J, Guo Z G. Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry, 2012, 22, 20112–20127.

    Article  Google Scholar 

  45. Tie L, Guo Z G, Li W. Optimal design of superhydrophobic surfaces using a paraboloid microtexture. Journal of Colloid and Interface Science, 2014, 436, 19–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Guo, Z. Characterization of Micro-Morphology and Wettability of Lotus Leaf, Waterlily Leaf and Biomimetic ZnO Surface. J Bionic Eng 12, 88–97 (2015). https://doi.org/10.1016/S1672-6529(14)60103-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(14)60103-7

Keywords

Navigation