Skip to main content
Log in

Thermo-elasto-visco-plastic finite element analysis on formation and propagation of off-corner subsurface cracks in bloom continuous casting

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models. A two-dimensional thermo-elasto-visco-plastic finite element model was developed to predict the mould gap evolution, temperature profiles and deformation behavior of the solidified shell in the mould region. Then, a three-dimensional model was adopted to calculate the shell growth, temperature history and the development of stresses and strains of the shell in the following secondary cooling zones. Finally, another three-dimensional model was used to analyze the stress distributions in the straightening region. The results showed that the off-corner cracks in the shell originated from the mould owing to the tensile strain developed in the crack sensitive regions of the solidification front, and they could be driven deeper by the possible severe surface temperature rebound and the extensive tensile stress in the secondary cooling zone, especially upon the straightening operation of the bloom casting. It is revealed that more homogenous shell temperature and thickness can be obtained through optimization of mould corner radius, casting speed and secondary cooling scheme, which help to decrease stress and strain concentration and therefore prevent the initiation of the cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Constant related to effective strain, s−1

C eff :

Effective specific heat including solidification latent heat of steel, J • kg−1 • °C−1

C p :

Specific heat at constant pressure, J • kg−1 • °C−1

C w :

Specific heat of water,J• kg−1• °C−1

E :

Temperature dependent Young’s modulus

f s :

Solid fraction

fα:

Solid fraction of αphase

f δ :

Solid fraction of δ phase

f γ :

Solid fraction of γphase

f ZST :

Solid fraction at zero strength temperature

h :

Strand thickness, m

h s :

Integrated heat transfer coefficient at strand surface, W • m−2 • °C−1

k :

Temperature dependent thermal conductivity of steels, W • m−1 • °C−1

K :

Strength coefficient

K T :

Boltzmann’s constant, W • m−2 • °C−4

L :

Local distance to meniscus, m

L f :

Solidification latent heat, kJ • kg−1

L m :

Effective length of mold, m

m :

Constant related to strain-rate sensitivity

m w :

Water flowrate for mould cooling, kg • s−1

n :

Strain-hardening exponent

\(\bar q\) :

Average heat flux in mold zone, J • m−2 • s−1

Q :

Activation energy for deformation, kJ • mol−1

q o :

Surface heat flux, J • m2 • s−1

R :

Gas constant, 8•314 J • mol−1 • K−1

S eff :

Effective area of mould, m2

ΔT:

Temperature difference of mould cooling water, °C

t :

Time, s

T :

Temperature, °C

T 0 :

Local surface temperature of strand, °C

T a :

Ambient temperature, °C

T m :

Casting temperature, °C

T ws :

Temperature of cooling water, °C

v :

Casting speed, m • min−1

w :

Secondary cooling water density, L • m−2 • s−1

W :

Strand width, m

x :

Coordinate along width direction, m

y :

Coordinate along thickness direction, m

ε:

Effective strain

εp:

Effective plastic strain

εδ:

Strain of δ phase

εγ:

Strain of γ phase

σ:

Flow stress, MPa

B:

Blackness

β:

Constant related to flow stress, MPa−1

References

  1. J. K. Brimacombe, K. Sorimachi, Metall. Trans. B 8 (1977) 489–505.

    Article  Google Scholar 

  2. J. K. Brimacombe, E. B. Hawbolt, F. Weinberg, Can. Metall. Quart. 19 (2013) 215–227.

    Article  Google Scholar 

  3. B. Stewart, M. Mcdonald, M. Hopkins, Metall. Italiana 31 (2009) 55–62.

    Google Scholar 

  4. J. Fu, F. Zhang, Y. Zhou, J. Univ. Sci. Technol. Beijing 16 (1994) 315–319 (in Chinese).

    Google Scholar 

  5. J. K. Park, B. G. Thomas, I. V. Samarasekera, Ironmak. Steelmak. 29 (2002) 359–375.

    Article  Google Scholar 

  6. Y. Meng, B. G. Thomas, Metall. Mater. Trans. B 34 (2003) 685–705.

    Article  Google Scholar 

  7. H. N. Han, Y. G. Lee, K. H. Oh, D. N. Lee, Mater. Sci. Eng. A 206 (1996) 81–89.

    Article  Google Scholar 

  8. Y. Ueshima, S. Mizoguchi, T. Matsumiya, H. Kajioka, Metall. Trans. B 17 (1996) 845–859.

    Article  Google Scholar 

  9. T. W. Clyne, M. Wolf, W. Kurz, Metall. Trans. B 13 (1982) 259–266.

    Article  Google Scholar 

  10. K. H. Kyung, Y. J. Tae, O. K. Hwan, L. D. Nyung, ISIJ Int. 36 (1996) 284–289.

    Article  Google Scholar 

  11. H. Sun, J. Zhang, Metall. Mater. Trans. B 45 (2014) 1133–1149.

    Article  Google Scholar 

  12. K. Liu, Q. Sun, J. Zhang, C. Wang, Metall. Res. Technol. 113 (2016) 504.

    Article  Google Scholar 

  13. D. P. Tan, Y. S. Ni, L. B. Zhang, J. Iron Steel Res. Int. 24 (2017) 669–677.

    Article  Google Scholar 

  14. J. K. Brimacombe, I. V. Samarasekera, R. B. Mahapatra, in: K. Matsumoto, Y. Hoshijima, K. Ishikura (Eds.), The Sixth International Iron and Steel Congress, The Iron and Steel Institute of Japan, Nagoya, 1990, pp. 246–255.

    Google Scholar 

  15. J. K. Brimacombe, Can. Metall. Quart. 15 (1976) 163–175.

    Article  Google Scholar 

  16. J. K. Park, B. G. Thomas, I. V. Samarasekera, Ironmak. Steelmak. 29 (2002) 359–375.

    Article  Google Scholar 

  17. R. Saraswat, D. M. Maijer, P. D. Lee, K. C. Mills, ISIJ Int. 47 (2007) 95–104.

    Article  Google Scholar 

  18. Y. M. Won, T. J. Yeo, J. S. Dong, K. H. Oh, Metall. Mater. Trans. B 31 (2000) 779–793.

    Article  Google Scholar 

  19. A. Jablonka, K. Harste, K. Schwerdtfeger, Steel Res. Int. 62 (1991) 24–33.

    Article  Google Scholar 

  20. Y. Meng, B. G. Thomas, Metall. Mater. Trans. B 34 (2003) 685–705.

    Article  Google Scholar 

  21. J. Miettinen, S. Louhenkilpi, Metall. Mater. Trans. B 25 (1994) 909–916.

    Article  Google Scholar 

  22. Y. M. Won, B. G. Thomas, Metall. Mater. Trans. A 32 (2001) 1755–1767.

    Article  Google Scholar 

  23. H. Mizukami, K. Murakami, Y. Miyashita, Tetsu-to-Hagane 63 (1977) S652 (in Japanese).

    Google Scholar 

  24. M. Uehara, I. V. Samarasekera, J. K. Brimacombe, Ironmak. Steelmak. 13 (1986) 138–153.

    Google Scholar 

  25. Z. Z. Cai, M. Y. Zhu, Int. J. Miner. Metall. Mater. 21 (2014) 240–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-quan Zhang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yj., Li, H., Lan, P. et al. Thermo-elasto-visco-plastic finite element analysis on formation and propagation of off-corner subsurface cracks in bloom continuous casting. J. Iron Steel Res. Int. 24, 1159–1168 (2017). https://doi.org/10.1016/S1006-706X(17)30168-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30168-1

Key words

Navigation