Skip to main content
Log in

Effects of Ni on austenite stability and fracture toughness in high Co-Ni secondary hardening steel

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Three kinds of high Co-Ni secondary hardening steels with different Ni contents were studied. The nanoscale austenite layers formed at the interface of matensite laths were observed. Both observation and diffusion kinetic simulation results showed that both Ni and Co did not obtain enough time to get the equilibrium content in this system. The Ni content in austenite layers decreased significantly, and Co content increased slightly with the decrease of Ni content in overall composition. The austenite stability was estimated by Olson-Cohen model, in which both chemical and mechanical driving force could be calculated by equilibrium thermodynamic and Mohr’s circle methods, respectively. Simulation and mechanical test results showed that the decrease of Ni content in austenite layers would cause the change of austenite stability and decrease the fracture toughness of the steels. When the Ni content in the overall composition was lower than 7 wt. %, the Ni content in γ phase would be lower than 20 wt. %. And the simulation value of \(M_{\rm{S}}^\sigma \) (stress-induced critical martensite transformation temperature) would be up to 80 °C, which was about 60 °C higher than room temperature. Based on the analysis, the Ni content in the overall composition of high Co-Ni secondary hardening steels should be higher than 8 wt. % in order to obtain a good fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Tao, C. Zhang, Z. Yang, H. Takeda, J. Iron. Steel. Res. Int. 17 (2010) No. 5, 74–78.

    Article  Google Scholar 

  2. W. B. Liu, C. Zhang, Z. X. Xia, Z. G. Yang, J. Nucl. Mater. 455 (2014) 402–406.

    Article  Google Scholar 

  3. Z. X. Xia, C. Zhang, N. Q. Fan, Y. F. Zhao, F. Xue, S. J. Liu, Mater. Sci. Eng. A 545 (2012) 91–96.

    Article  Google Scholar 

  4. G. B. Olson, Mater. Sci. Eng. A 438–440 (2006) 48–54.

    Article  Google Scholar 

  5. G. B. Olson, C. J. Kuehmann, Scripta Mater. 70 (2014) 25–30.

    Article  Google Scholar 

  6. R. Ayer, P. M. Machmeier, Metall. Trans. A 24 (1993) 1943–1955.

    Article  Google Scholar 

  7. C. Wang, C. Zhang, Z. Yang, Micron 67 (2014) 112–116.

    Article  Google Scholar 

  8. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Mater. Sci. Eng. A 669 (2016) 312–317.

    Article  Google Scholar 

  9. Z. F. Hu, X. F. Wu, Micron 34 (2003) 19–23.

    Article  Google Scholar 

  10. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Mater. Sci. Eng. A 646 (2015) 1–7.

    Article  Google Scholar 

  11. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Mater. Des. 87 (2015) 501–506.

    Article  Google Scholar 

  12. G. B. Olson, Acta Mater. 61 (2013) 771–781.

    Article  Google Scholar 

  13. Y. Gao, C. Xu, Z. He, Y. He, L. Li, J. Iron Steel Res. Int. 22 (2015) 48–54.

    Article  Google Scholar 

  14. D. Xu, Y. Liu, J. Li, Q. Meng, P. Li, J. Iron Steel Res. Int. 23 (2016) 138–144.

    Article  Google Scholar 

  15. S. G. Shiri, S. A. J. Jahromi, Y. Palizdar, M. Belbasi, J. Iron Steel Res. Int. 23 (2016) 988–996.

    Article  Google Scholar 

  16. J. Chiang, J. D. Boyd, A. K. Pilkey, Mater. Sci. Eng. A 638 (2015) 132–142.

    Article  Google Scholar 

  17. H. S. Park, J. C. Han, N. S. Lim, J. Seol, C. G. Park, Mater. Sci. Eng. A 627 (2015) 262–269.

    Article  Google Scholar 

  18. G. B. Olson, M. Cohen, Metall. Tran. A 13 (1982) 1907–1914.

    Article  Google Scholar 

  19. G. Ghosh, G. B. Olson, Acta Metall. Mater. 42 (1994) 3361–3370.

    Article  Google Scholar 

  20. G. Ghosh, G. B. Olson, Acta Metall. Mater. 42 (1994) 3371–3379.

    Article  Google Scholar 

  21. J. Li, F. Guo, Z. Li, J. Wang, M. Yan, J. Iron Steel Res. Int. 14 (2007) No. 5, 254–258.

    Article  Google Scholar 

  22. D. Figueroa, M. J. Robinson, Corros. Sci. 52 (2010) 1593–1602.

    Article  Google Scholar 

  23. J. Angeles, J. Sound. Vib. 154 (1992) 556–567.

    Article  Google Scholar 

  24. C. Bellver-Cebreros, M. Rodriguez-Danta, Opt. Commun. 212 (2002) 199–210.

    Article  Google Scholar 

  25. H. Jou, Ultra-high-strength High-toughness Steel, US, CA 2715998 A1, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cc., Zhang, C. & Yang, Zg. Effects of Ni on austenite stability and fracture toughness in high Co-Ni secondary hardening steel. J. Iron Steel Res. Int. 24, 177–183 (2017). https://doi.org/10.1016/S1006-706X(17)30025-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30025-0

Key words

Navigation