Skip to main content
Log in

Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Hongge vanadium titanomagnetite (HVTM) pellets were reduced by H2-CO gas mixture for simulating the reduction processes of Midrex and HYL-III shaft furnaces. The influences of reduction temperature, ratio of φ(H2) to φ(CO), and pellet size on the reduction of HVTM pellets were evaluated in detail and the reduction reaction kinetics was investigated. The results show that both the reduction degree and reduction rate can be improved with increasing the reduction temperature and the H2 content as well as decreasing the pellet size. The rational reduction parameters are reduction temperature of 1050 °C, ratio of φ(H2) to φ(CO) of 2.5, and pellet diameter in the range of 8–11 mm. Under these conditions (pellet diameter of 11 mm), final reduction degree of 95.51% is achieved. The X-ray diffraction (XRD) pattern shows that the main phases of final reduced pellets under these conditions (pellet diameter of 11 mm) are reduced iron and rutile. The peak intensity of reduced iron increases obviously with the increase in the reduction temperature. Besides, relatively high reduction temperature promotes the migration and coarsening of metallic iron particles and improves the distribution of vanadium and chromium in the reduced iron, which is conducive to subsequent melting separation. At the early stage, the reduction process is controlled by interfacial chemical reaction and the apparent activation energy is 60.78 kJ/mol. The reduction process is controlled by both interfacial chemical reaction and internal diffusion at the final stage, and the apparent activation energy is 30.54 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Luo, Z. Y. Wu, E. H. Wu, J. H. Li, X. J. Liao, R. Tang, S. L. Yang, Iron Steel Vanadium Titanium 36 (2015) No. 2, 73–77 (in Chinese).

    Google Scholar 

  2. H. G. Du, Theory of Smelting Vanadium-bearing Titanomagnetite by Blast Furnace, Science Press, Beijing, 1996 (in Chinese).

    Google Scholar 

  3. J. H. Chen, C. P. Guan, Y. Wang, Y. M. Zhou, X. J. Tang, Sichuan Nonferrous Metallurgy (2011) No. 2, 17–20 (in Chinese).

  4. W. G. Fu, Y. C. Wen, H. E. Xie, J. Iron Steel Res. Int. 18 (2011) No. 4, 7–10, 18.

    Article  Google Scholar 

  5. W. G. Fu, H. E. Xie, Steel Res. Int. 82 (2011) 501–504.

    Article  Google Scholar 

  6. Y. Zhang, J. Tang, M. S. Chu, Y. Liu, S. Y. Chen, X. X. Xue, J. Iron Steel Res. Int. 21 (2014) No. 2, 144–150.

    Article  Google Scholar 

  7. G. H. Han, T. Jiang, Y. B. Zhang, Y. F. Huang, G. H. Li, J. Iron Steel Res. Int. 18 (2011) No. 8, 14–19.

    Article  Google Scholar 

  8. B. Liu, H. Du, S. N. Wang, Y. Zhang, S. L. Zheng, L. J. Li, D. H. Chen, AICHE J. 59 (2013) No. 2, 541–552.

    Article  Google Scholar 

  9. D. S. Chen, L. S. Zhao, T. Qi, G. P. Hu, H. X. Zhao, J. Li, L. N. Wang, Trans. Nonferrous Met. Soc. China 23 (2013) 3076–3082.

    Article  Google Scholar 

  10. Z. H. Wang, S. L. Zheng, S. N. Wang, B. Liu, D. W. Wang, H. Du, Y. Zhang, Trans. Nonferrous Met. Soc. China 24 (2014) 1273–1288.

    Article  Google Scholar 

  11. G. H. Han, T. Jiang, Y. B. Zhang, Y. F. Huang, G. H. Li, J. Iron Steel Res. Int. 18 (2011) No. 8, 14–19.

    Article  Google Scholar 

  12. S. Y. Luo, Y. M. Zhou, C. J. Yi, J. Renew Sustain Ener. 5 (2013) No. 6, 063114.

    Article  Google Scholar 

  13. H. W. Kang, W. S. Chung, T. Murayama, Y. Ono, ISIJ Int. 38 (1998) 324–331.

    Article  Google Scholar 

  14. H. B. Zuo, C. Wang, J. J. Dong, K. X. Jiao, R. S. Xu, Int. J. Miner. Metall. Mater. 22 (2015) 688–696.

    Article  Google Scholar 

  15. J. H. Liu, J. Y. Zhang, T. P. Zhou, J. Iron Steel Res. 12 (2000) No. 1, 5–9 (in Chinese).

    Article  Google Scholar 

  16. A. Bonalde, A. Henriquez, M. Manrique, ISIJ Int. 45 (2005) 1255–1260.

    Article  Google Scholar 

  17. H. T. Wang, H. Y. Sohn, Metall. Mater. Trans. B 44 (2013) 133–145.

    Article  Google Scholar 

  18. A. Habermann, F. Winter, H. Hofbauer, J. Zirngast, J. L. Schenk, ISIJ Int. 40 (2000) 935–942.

    Article  Google Scholar 

  19. H. M. Long, J. X. Li, P. Wang, S. Q. Shi, Ironmak. Steelmak. 39 (2012) 585–592.

    Article  Google Scholar 

  20. E. A. Mousa, A. Babich, D. Senk, Steel Res. Int. 84 (2013) 1085–1097.

    Article  Google Scholar 

  21. H. Y. Sun, J. S. Wang, Y. H. Han, X. F. She, Q. G. Xue, Int. J. Miner. Process. 125 (2013) 122–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao-yong Zhu Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Fu, Gq., Chu, Ms. et al. Reduction behavior and mechanism of Hongge vanadium titanomagnetite pellets by gas mixture of H2 and CO. J. Iron Steel Res. Int. 24, 34–42 (2017). https://doi.org/10.1016/S1006-706X(17)30006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(17)30006-7

Key words

Navigation