Skip to main content
Log in

A new three-dimensional finite-volume non-hydrostatic shock-capturing model for free surface flow

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper a new finite-volume non-hydrostatic and shock-capturing three-dimensional model for the simulation of wave-structure interaction and hydrodynamic phenomena (wave refraction, diffraction, shoaling and breaking) is proposed. The model is based on an integral formulation of the Navier-Stokes equations which are solved on a time dependent coordinate system: a coordinate transformation maps the varying coordinates in the physical domain to a uniform transformed space. The equations of motion are discretized by means of a finite-volume shock-capturing numerical procedure based on high order WENO reconstructions. The solution procedure for the equations of motion uses a third order accurate Runge-Kutta (SSPRK) fractional-step method and applies a pressure corrector formulation in order to obtain a divergence-free velocity field at each stage. The proposed model is validated against several benchmark test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallerano F., Cannata G. Central Weno scheme for the integral form of contravariant shallow-water equations [J]. International Journal for Numerical Methods in Fluids, 2011, 67(8): 939–959.

    Article  MathSciNet  Google Scholar 

  2. Cioffi F., Gallerano F. From rooted to floating vegetal species in lagoons as a consequence of the increases of external nutrient load, an analysis by model of the species selection mechanism [J]. Applied Mathematical Modelling, 2006, 30(1): 10–37.

    Article  Google Scholar 

  3. Wang B. L., Zhu Y. Q., Song Z. P. et al. Boussinesq type modelling in surf zone using mesh-less-least-square-based finite-difference method [J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 89–92.

    Article  Google Scholar 

  4. Liu P. L. F., Yoon S. B., Seo S. N. et al. Numerical simulation of tsunami inundation at Hilo, Hawaii. Recent development in tsunami research [M]. El-Sabh M. I. Edition, New York, USA: Kluwer Academic Publishers, 1994.

    Google Scholar 

  5. Gallerano F., Cannata G., Villani M. An integral contravariant formulation of the fully nonlinear Boussinesq equations [J]. Coastal Engineering, 2014, 83(1): 119–136.

    Article  Google Scholar 

  6. Madsen P. A., Sørensen O. R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry [J]. Coastal Engineering, 1992, 18(3–4): 183–204.

    Article  Google Scholar 

  7. Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(6): 618–638.

    Article  Google Scholar 

  8. Wei G., Kirby J. T., Grilli S. T. et al. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear un steady waves [J]. Journal of Fluid Mechanics, 1995, 294: 71–92.

    Article  MathSciNet  Google Scholar 

  9. Sun Z. B., Liu S. X., Li J. X. Numerical study of multi-directional focusing wave run-up of a vertical surface piercing cylinder [J]. Journal of Hydrodynamics, 2012, 24(1): 86–96.

    Article  Google Scholar 

  10. Fang K. Z., Zhang Z., Zou Z. L. et al. Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme [J]. Journal of Hydrodynamics, 2014, 26(2): 187–198.

    Article  Google Scholar 

  11. Gallerano F., Cannata G., Lasaponara F. A new numerical model for simulations of wave transformation, breaking and longshore currents in complex coastal regions [J]. International Journal for Numerical Methods in Fluids, 2016, 80(10): 571–613.

    Article  MathSciNet  Google Scholar 

  12. Chen Q., Kirby J. T., Dalrympe R. A. et al. Boussinesq modelling of longshore currents [J]. Journal of Geophy-sical Research Oceans, 2003, 108(C11): 156–157.

    Google Scholar 

  13. Chen Q. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds [J]. Journal of Engineering Mechanics, 2006, 132(2): 220–230.

    Article  MathSciNet  Google Scholar 

  14. Furman D. R., Madsen P. A. Tsunami generation, pro-pagation, and run-up with a high-order Boussinesq model [J]. Coastal Engineering, 2009, 56(7): 747–758.

    Article  Google Scholar 

  15. Watts P., Grilli S. T., Kirby J. T. et al. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model [J]. Natural Hazards and Earth System Science, 2003, 3(5): 391–402.

    Article  Google Scholar 

  16. Rakha K. A., Deigaard R., Brøker I. A phase-resolving cross shore sediment transport model for beach profile evolution [J]. Coastal Engineering, 1997, 31(1–4): 231–261.

    Article  Google Scholar 

  17. Johns B., Jefferson J. The numerical modelling of surface wave propagation in the surf zone [J]. Journal of Physical Oceanography, 1980, 10(7): 1061–1069.

    Article  Google Scholar 

  18. Casulli V., Cheng R. T. Semi-implicit finite-difference methods for three-dimensional shallow flow [J]. International Journal for Numerical Methods in Fluids, 1992, 15(6): 629–648.

    Article  Google Scholar 

  19. Lin P., Li C. W. A σ- coordinate three-dimensional numerical model for surface wave propagation [J]. International Journal for Numerical Methods in Fluids, 2002, 38(11): 1045–1068.

    Article  MathSciNet  Google Scholar 

  20. Lai Z., Chen C., Cowles G. et al. A non-hydrostatic version of FVCOM: 1. Validation experiment [J]. Journal of Geophysical Research Oceans, 2010, 115(C11): C11010.

    Article  Google Scholar 

  21. Bradford S. F. Godunov-based model for non-hydrostatic wave dynamics [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2005, 131(5): 226–238.

    Article  Google Scholar 

  22. Gallerano F., Cannata G. Compatibility of reservoir sediment flushing and river protection [J]. Journal of Hydraulic Engineering, ASCE, 2011, 137(10): 1111–1125.

    Article  Google Scholar 

  23. Ma G., Shi F., Kirby J. T. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes [J]. Ocean Modelling, 2012, 43–44: 22–35.

    Article  Google Scholar 

  24. Ai C., Jin S. A multi-layer non-hydrostatic model for wave breaking and run-up [J]. Coastal Engineering, 2012, 62: 1–8.

    Article  Google Scholar 

  25. Fang K., Liu Z., Zou Z. Efficient computation of coastal waves using a depth-integrated, non-hydrostatic model [J]. Coastal Engineering, 2015, 97: 21–36.

    Article  Google Scholar 

  26. Harlow F. H., Welch J. E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J]. Physics of Fluids, 1965, 8(12): 2182–2189.

    Article  MathSciNet  Google Scholar 

  27. Thomas T. G., Leslie D. C. Development of a conservative 3D free surface code [J]. Journal of Hydraulic Research, 1992, 30(1): 107–115.

    Article  Google Scholar 

  28. Casulli V., Stelling G. S. Numerical simulation of 3D quasi-hydrostatic free surface flows [J]. Journal of Hydraulic Engineering, ASCE, 1998, 124(7): 678–686.

    Article  Google Scholar 

  29. Phillips N. A. A coordinate system having some special advantages for numerical forecasting [J]. Journal of Meteorology, 1957, 14: 184–185.

    Article  Google Scholar 

  30. Toro E. Shock-capturing methods for free-surface shallow flows [M]. Manchester, UK: John Wiley and Sons, 2001.

    MATH  Google Scholar 

  31. Gallerano F., Cannata G., Tamburrino M. Upwind Weno scheme for shallow water equations in contravariant formu-lation [J]. Computers and Fluids, 2012, 62: 1–12.

    Article  MathSciNet  Google Scholar 

  32. Harten A., Lax P., Van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws [J]. Siam Review, 1983, 25(1): 35–61.

    Article  MathSciNet  Google Scholar 

  33. Trottemberg U., Oosterlee C. W., Schuller A. Multigrid [M]. New York, USA: Academic Press, 2001.

    Google Scholar 

  34. Stelling G., Zijlema M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation [J]. International Journal for Numerical Methods in Fluids, 2003, 43(1): 1–23.

    Article  MathSciNet  Google Scholar 

  35. Gottlieb S., Ketcheson D. I., Shu C. W. High order strong stability preserving time discretization [J]. Journal of Scientific Computing, 2009, 38(3): 251–289.

    Article  MathSciNet  Google Scholar 

  36. Spiteri R. J., Ruuth S. J. A new class of optimal high-order strong-stability-preserving time discretization methods [J]. Siam Journal on Numerical Analysis, 2002, 40(2): 469–491.

    Article  MathSciNet  Google Scholar 

  37. Rosenfeld M., Kwak D., Vinokur M. A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems [J]. Journal of Computational Physics, 1991, 94: 102–137.

    Google Scholar 

  38. Zijlema M., Stelling G., Smit P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters [J]. Coastal Engineering, 2011, 58(10): 992–1012.

    Article  Google Scholar 

  39. Beji S., Batties J. A. Experimental investigation of wave propagation over a bar [J]. Coastal Engineering, 1993, 19(1–2):151–162.

    Article  Google Scholar 

  40. Berkhoff J. C. W., Booy N., Radder A. C. Verification of numerical wave propagation models for simple harmonic linear water waves [J]. Coastal Engineering, 1982, 6(3): 255–279.

    Article  Google Scholar 

  41. Synolakis C. E. The runup of solitary waves [J]. Journal of Fluid Mechanics, 1987, 185: 523–545.

    Article  MathSciNet  Google Scholar 

  42. Gallerano F., Cannata G., Lasaponara F. Numerical simu-lation of wave transformation, breaking and run-up by a contravariant fully nonlinear Boussinesq equations model [J]. Journal of Hydrodynamics, 2016, 28(3): 379–388.

    Article  Google Scholar 

  43. Lin P. A multiple layers-coordinate model for simulation of wave-structure interaction [J]. Computers and Fluids, 2006, 35(2): 147–167.

    Article  Google Scholar 

  44. Li C. W., Zhu B. A σ-coordinate 3D k-ε model for turbulent free surface flow over a submerged structure [J]. Applied Mathematical Modelling, 2002, 26(12): 1139–1150.

    Article  Google Scholar 

  45. Martinuzzi R., Tropea C. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow [J]. Journal of Fluids Engineering, 1993, 115(1): 85–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cannata.

Additional information

Biography: Francesco Gallerano (1953-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallerano, F., Cannata, G., Lasaponara, F. et al. A new three-dimensional finite-volume non-hydrostatic shock-capturing model for free surface flow. J Hydrodyn 29, 552–566 (2017). https://doi.org/10.1016/S1001-6058(16)60768-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60768-0

Keywords

Navigation