Skip to main content
Log in

Review of Smooth Particle Hydrodynamics and its Applications for Environmental Flows

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

With the advancement of the computing facilities, meshless techniques have become a new arena of research for the computational scientists. Smooth particle hydrodynamics (SPH), a popular mesh free method, has shown significant potential in the numerical reproduction of many complex problems associated with environmental hydraulics. The present paper is a review of SPH approach and how it has been successfully implemented in understanding the flow physics associated with natural flow regimes. The manuscript is arranged into five sections. The first and the second sections describe the philosophy behind the development of SPH. The flow physics associated with the interaction of the solid particles and the fluid medium is explained in the third section. The next section is dedicated to the application of SPH in modelling environmental flows at different scales followed by a closure section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\({\varvec{x}},\user2{ x^{\prime}}\) :

Position of a point

\(\delta ({\text{x}} - {\text{x}}^{^{\prime}} )\) :

Dirac delta function

W :

Smoothing function

h :

Smoothing length (L)

h 0 :

Initial smoothing length (L)

\(f({\varvec{x}})\) :

Function of position vector x

 < f(x) > :

Kernel approximated value of function f(x)

D :

Support domain

\({\alpha }_{D}\) :

Normalization constant

q :

Parameter equal to \(\frac{{\left| {{\text{x}} - {\text{x}}^{^{\prime}} ,\,h} \right|}}{h}\)

g(q):

A function of the parameter q

k :

Scaling factor

i, j :

Indices denoting the position of the particles

Re :

Remainder term

\(\nabla\) :

Delta operator

M, N,:

Total number of particles inside the support domain of the particle i

f i :

Function value at the location of a particle i

f j :

Function value at the location of a particle j

m :

Mass of the particles (M)

\(\rho\) :

Density (ML− 3)

\({\rho }_{0}\) :

Initial density (ML− 3)

n :

Exponent

t :

Time (T)

\(\Delta t\) :

Incremental time (T)

\({\varvec{V}}\) :

Velocity field (LT− 1)

\(\mu\) :

Viscosity (ML− 1 T− 1)

F external :

External force (MLT− 2)

P :

Pressure (ML− 1 T− 2)

P mod :

Modified Pressure (ML− 1 T− 2)

\({\varvec{g}}\) :

Acceleration due to gravity (LT− 2)

n d :

Number of dimensions

H avg :

Average height of the sediment stack (L)

θ :

Angle of inclination

References

  1. J.R. Agudo, A. Wierschem, Incipient motion of a single particle on regular substrates in laminar shear flow. Phys. Fluids 24, 093302 (2012)

    Article  Google Scholar 

  2. M.A. Boller, M.C. Kavanaugh, Particle characteristics and headloss increase in granular media filtration. Water Res. 29(4), 1139–1149 (1995)

    Article  Google Scholar 

  3. P. Sajeesh, A.K. Sen, Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17, 1–52 (2014)

    Article  Google Scholar 

  4. D.G. Stevenson, Flow and filtration through granular media-the effect of grain and particle size dispersion. Water Res. 31(2), 310–322 (1997)

    Article  Google Scholar 

  5. N.S. Cheng, A diffusive model for evaluating thickness of bedload layer. Adv. Water Resour. 26, 875–882 (2003)

    Article  Google Scholar 

  6. Q. Zhang, A. Prosperetti, Physics-based analysis of the hydrodynamic stress in a fluid-particle system. Phys. Fluids 22, 033306 (2010)

    Article  MATH  Google Scholar 

  7. S.Z. Ali, S. Dey, Origin of the scaling laws of sediment transport. Proc. R. Soc. A 473, 20160785 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Dey, S.Z. Ali, Mechanics of sediment transport: particle scale o entrainment to continuum scale of bedload flux. J. Eng. Mech. 143(11), 04017127 (2017)

    Google Scholar 

  9. S. Dey, S.Z. Ali, Stochastic mechanics of loose boundary particle transport in turbulent flow. Phys. Fluids 29, 055103 (2017)

    Article  Google Scholar 

  10. N. Ijaz, A. Zeeshan, M.M. Bhatti, R. Ellahi, Analytical study on liquid-solid particles interaction in the presence of heat and mass transfer through a wavy channel. J. Mol. Liq. 250, 80–87 (2018)

    Article  Google Scholar 

  11. T. Pahtz, E.J.R. Parteli, J.F. Kok, H.J. Herrmann, Analytical model for flux saturation in sediment transport. Phys. Rev. E 89, 052213 (2014)

    Article  Google Scholar 

  12. H. Aksoy, N.E. Unal, S. Cokgor, A. Gedikli, J. Yoon, K. Koca, S.B. Inci, E. Eris, G. Pak, Laboratory experiments of sediment transport from bare soil with a rill. Hydrol. Sci. J. 58(7), 1505–1518 (2013)

    Article  Google Scholar 

  13. S. Dey, R. Das, R. Gaudio, S.K. Bose, Turbulence in mobile-bed streams. Acta Geophys. 60(6), 1547–1588 (2012)

    Article  Google Scholar 

  14. H. Fang, W. Cheng, M. Fazeli, S. Dey, Bedforms and Flow Resistance of Cohesive Beds with and without Biofilm Coating. J. Hydraul. Eng. 143(8), 06017010 (2017)

    Article  Google Scholar 

  15. M.A. Hassan, M. Church, Experiments on surface structure and partial sediment transport on a gravel bed. Water Resour. Res. 36(7), 1885–1895 (2000)

    Article  Google Scholar 

  16. K. Khosravi, A.H.N. Chegini, J.R. Cooper, P. Daggupati, A. Binns, L. Mao, Uniform and graded bed-load sediment transport in a degrading channel with non-equilibrium conditions. Int. J. Sedim. Res. 35, 115–124 (2020)

    Article  Google Scholar 

  17. A. Nazari-Giglou, A. Jabbari-Sahebari, A. Shakibaeinia, S.M. Borghei, An experimental study of sediment transport in channel confluences. Int. J. Sedim. Res. 31, 87–96 (2016)

    Article  Google Scholar 

  18. M. Regueiro-Picallo, J. Suárez, E. Sañudo, J. Puertas, J. Anta, New insights to study the accumulation and erosion processes of fine-grained organic sediments in combined sewer systems from a laboratory scale model. Sci. Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2020.136923

    Article  Google Scholar 

  19. S. Salim, C. Pattiaratchi, Sediment resuspension due to near-bed turbulent coherent structures in the nearshore. Cont. Shelf Res. 194, 104048 (2020)

    Article  Google Scholar 

  20. L.C. van Rijn, Sediment transport, part II: suspended load transport. J. Hydraul. Eng. 110(11), 1613–1641 (1984)

    Article  Google Scholar 

  21. L.C. van Rijn, “Sediment transport, Part III: bed forms and alluvial roughness. J. Hydraul. Eng. 110(12), 1733–1754 (1984)

    Article  Google Scholar 

  22. L.C. van Rijn, Unified view of sediment transport by currents and waves. I: initiation of motion, bed roughness, and bed-load transport. J. Hydraul. Eng. 133(6), 649–667 (2007)

    Article  Google Scholar 

  23. A.P. Nicholas, D.E. Walling, Numerical modelling of floodplain hydraulics and suspended sediment transport and deposition. Hydrol. Process. 12, 1339–1355 (1998)

    Article  Google Scholar 

  24. L.C. van Rijn, Sediment transport, part I: bed load transport. J. Hydraul. Eng. 110(10), 1431–1456 (1984)

    Article  Google Scholar 

  25. O. Durán, B. Andreotti, P. Claudin, Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24, 103306 (2012)

    Article  Google Scholar 

  26. Z. Feng, G. Tan, J. Xia, C. Shu, P. Chen, R. Yi, Two-dimensional numerical simulation of sediment transport using improved critical shear stress methods. Int. J. Sedim. Res. 35, 15–26 (2020)

    Article  Google Scholar 

  27. R. Maurin, J. Chauchat, B. Chareyre, P. Frey, A minimal coupled fluid-discrete element model for bedload transport. Phys. Fluids 27, 113302 (2015)

    Article  Google Scholar 

  28. S. Orseau, N. Huybrechts, P. Tassi, D.P.V. Bang, F. Klein, Two-dimensional modeling of fine sediment transport with mixed sediment and consolidation: application to the Gironde Estuary, France. Int. J. Sedim. Res. (2020). https://doi.org/10.1016/j.ijsrc.2019.12.005

    Article  Google Scholar 

  29. R. Sun, H. Xiao, SediFoam: a general-purpose, open-source CFD–DEM solver for particle-laden flow with emphasis on sediment transport. Comput. Geosci. 89, 207–219 (2016)

    Article  Google Scholar 

  30. P.D. Bates, S.N. Lane, R.I. Ferguson, Computational Fluid Dynamics – Applications in Environmental Hydraulics, John Wiley and Sons Ltd (2005)

  31. M.B. Liu, G.R. Liu, Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Kajishima, K. Taira, Computational fluid dynamics—incompressible turbulent flows (Springer International Publishing, 2017)

    MATH  Google Scholar 

  33. Moukalled, F., Mangani, L., Darwish, M. (2016). The finite volume method in computational fluid dynamics—an advanced introduction with OpenFOAM and Matlab, Springer International Publishing Switzerland

  34. J.H. Ferziger, M. Perić, R.L. Street, Computational Methods for Fluid Dynamics (Springer-Verlag, Berlin Heidelberg, 1996)

    Book  MATH  Google Scholar 

  35. Z. Hashemi, O. Abouali, G. Ahmadi, Direct numerical simulation of particle-fluid interactions: a review. Iran. J. Sci. Technol. Trans. Mech. Eng. 41, 71–89 (2017)

    Article  Google Scholar 

  36. Bao, Y.B., and Meskas, J. (2011) Lattice Boltzmann Method for Fluid Simulations, Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York

  37. Z. Chen, C. Shu, D. Tan, Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows. Phys. Fluids 30, 053601 (2018)

    Article  Google Scholar 

  38. Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu, Immersed boundary–simplified thermal lattice Boltzmann method for incompressible thermal flows. Phys. Fluids 32, 013605 (2020)

    Article  Google Scholar 

  39. N. Tofany, Y.M. Low, C.H. Lee, Y.M. Chiew, Two-phase flow simulation of scour beneath a vibrating pipeline during the tunnel erosion stage. Phys. Fluids 31, 113302 (2019)

    Article  Google Scholar 

  40. W. Wu, Computational river dynamics (Taylor & Francis Group, London, UK, 2008)

    Google Scholar 

  41. W. Shyy, S.S. Thakur, H. Quyang, J. Liu, E. Blosch, Computational techniques for complex transport phenomenon (Cambridge University Press, 1997)

    Book  Google Scholar 

  42. Afzal, M. S. (2013) 3D Numerical Modelling of Sediment Transport under Current and Waves, MSc Thesis, Norwegian University of Science and Technology

  43. M.S. Afzal, L.E. Holmedal, D. Myrhaug, Three-dimensional streaming in the seabed boundary layer beneath propagating waves with an angle of attack on the current. J. Geophys. Res. Oceans 120, 4370–4391 (2015)

    Article  Google Scholar 

  44. S. Bosma, H. Hajibeygi, M. Tene, H.A. Tchelepi, Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM). J. Comput. Phys. 351, 145–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. K.G. Felker, J.M. Stone, A fourth-order accurate finite volume method for ideal MHD via upwind constrained transport. J. Comput. Phys. 375, 1365–1400 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Olsen, N.R.B. (2000). CFD algorithms for hydraulic engineering. Lecture notes, Department of Hydraulic and Environmental Engineeering, The Norwegian University of Science and Technology

  47. V.B. Pandey, I.V. Singh, B.K. Mishra, S. Ahmad, A.V. Rao, V. Kumar, Creep crack simulations using continuum damage mechanics and extended finite element method. Int. J. Damage Mech 28(1), 3–34 (2019)

    Article  Google Scholar 

  48. J.R. Wagner, C.F. Higgs, A finite element model for magnetohydrodynamic squeeze-film flows. Phys. Fluids 30, 123103 (2018)

    Article  Google Scholar 

  49. J. Wang, X. Ye, A weak Galerkin finite element method for the stokes equations. Adv. Comput. Math. 42, 155–174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Filho, C.A.D.F. (2019) Smooth particle hydrodynamics—fundamentals and basic applications in continuum mechanics, Springer Nature Switzerland AG 2019

  51. Liu, G.R. (2010) Meshfree Methods: Moving beyond the finite element method, Taylor & Francis Group, LLC

  52. J.D. Anderson Jr., Computational fluid dynamics: the basics with applications (McGraw Hill Education, 1995)

    Google Scholar 

  53. S. Mazumder, Numerical methods for partial differential equations: finite difference and finite methods (Elsevier Inc, 2016)

    MATH  Google Scholar 

  54. Liu, G.R., Gu, Y.T. (2005) An Introduction to Meshfree methods and their Programming, Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands

  55. T.J. Chung, Computational fluid dynamics (Cambridge University Press, 2002)

    Book  MATH  Google Scholar 

  56. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  57. F.E. Erami, A.R. Firoozjaee, Numerical solution of bed load transport equations using discrete least squares meshless (DLSM) method. Appl. Math. Model. 77, 1095–1109 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Gotoh, A. Khayyer, On the state-of-the-art of particle methods for coastal and ocean engineering. Coast. Eng. J. 60(1), 79–103 (2018)

    Article  Google Scholar 

  59. S.R. Idelsohn, E. O˜nate, P. Becker, Particle methods in computational fluid dynamics (Wiley Online Library, 2017)

    Google Scholar 

  60. D. Markauskas, H. Kruggel-Emden, R. Sivanesapillai, H. Steeb, Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow. Powder Technol. 305, 78–88 (2017)

    Article  Google Scholar 

  61. R.A. Gingold, J.J. Monaghan, Smooth particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  MATH  Google Scholar 

  62. L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013–1024 (1977)

    Article  Google Scholar 

  63. Amicarelli, A., Manenti, S., Albano, R., Agate, G., Paggi, M., Longoni, L., Mirauda, D., Ziane, L., Viccione, G., Todeschini, S., Sole, A., Baldini, L.M., Brambilla, D., Papini, M., Khellaf, M.C., Tagliafierro, B., Sarno, L., Pirovano, G. (2020). “SPHERA v.9.0.0: A computational fluid dynamics research code, based on the smoothed particle hydrodynamics mesh-less method.” Comput. Phys. Commun., 107157

  64. Libersky, L.D., Petschek, A.G. (1991) “Smooth particle hydrodynamics with strength of materials.” In: Trease H.E., Fritts M.F., Crowley W.P. (eds) Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Lecture Notes in Physics, 395. Springer, Berlin, Heidelberg

  65. R. Memarzadeh, G. Barani, M. Ghaeini-Hessaroeyeh, Numerical modeling of sediment transport based on unsteady and steady flows by incompressible smoothed particle hydrodynamics method. J. Hydrodyn. 30, 928–942 (2018)

    Article  Google Scholar 

  66. J.P. Morris, P.J. Fox, Yi. Zhu, Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Article  MATH  Google Scholar 

  67. D. Violeau, R. Issa, Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int. J. Numer. Meth. Fluids 53, 277–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  68. Benz, W. (1990) “Smoothed particle hydrodynamics: a review.” The Numerical Modelling of Nonlinear Stellar Pulsations, 269–288

  69. M.A.W. Khairi, M.R. Rozainy, J. Ikhsan, Smoothed particle hydrodynamics simulation for debris flow: a review. IOP Conf. Series Mater. Sci. Eng. 864, 012045 (2020)

    Article  Google Scholar 

  70. A.B. Moreira, A. Leroy, D. Violeau, F.A. Taveira-Pinto, Overview of large-scale smoothed particle hydrodynamics modeling of dam hydraulics. J. Hydraul. Eng. 146(2), 03119001 (2020)

    Article  Google Scholar 

  71. R. Vignjevic, J. Campbell, Review of development of the smooth particle hydrodynamics (SPH) method, in Predictive modeling of dynamic processes. ed. by S. Hiermaier (Springer, Boston, MA, 2009). https://doi.org/10.1007/978-1-4419-0727-1_20

    Chapter  Google Scholar 

  72. D. Violeau, B.D. Rogers, Smoothed particle hydrodynamics (SPH) for freesurface flows: past, present and future. J. Hydraul. Res. 54(1), 1–26 (2016)

    Article  Google Scholar 

  73. T. Ye, D. Pan, C. Huang, M. Liu, Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys. Fluids 31, 011301 (2019)

    Article  Google Scholar 

  74. G.R. Liu, M.B. Liu, Smooth particle hydrodynamics: a meshfree particle method (World Scientific Publishing Co. Pte. Ltd, 2003)

    Book  MATH  Google Scholar 

  75. M.B. Liu, G.R. Liu, K.Y. Lam, Constructing smoothing functions in smoothed particle hydrodynamics with applications. J. Comput. Appl. Math. 155(2), 263–284 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  76. D.A. Fulk, D.W. Quinn, An analysis of 1-D smoothed particle hydrodynamics kernels. J. Comput. Phys. 126(1), 165–180 (1996)

    Article  MATH  Google Scholar 

  77. L. Hernquist, Some cautionary remarks about smoothed particle hydrodynamics. Astrophys. J. 404(2), 717–722 (1993)

    Article  Google Scholar 

  78. J.J. Monaghan, Why particle methods work. SIAM J. Sci. Stat. Comput. 3(4), 422–433 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  79. J.J. Monaghan, Smooth particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  Google Scholar 

  80. J.J. Monaghan, Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  81. J.P. Morris, Analysis of smoothed particle hydrodynamics with applications (Monash University, 1996)

    Google Scholar 

  82. N.J. Quinlan, M. Basa, M. Lastiwka, Truncation error in mesh-free particle methods. Int. J. Numer. Meth. Eng. 66, 2064–2085 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  83. G.L. Vaughan, T.R. Healy, K.R. Bryan, A.D. Sneyd, R.M. Gorman, Completeness, conservation and error in SPH for fluids. Int. J. Numer. Meth. Fluids 56, 37–62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  84. Cossins, P.J. (2010). “Smooth particle hydrodynamics.” http://arxiv.org/abs/arXiv:1007.1245

  85. R. Fatehi, M.T. Manzari, Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput. Math. Appl. 61, 482–498 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  86. Q. Zhu, L. Hernquist, Y. Li, Numerical convergence in smoothed particle hydrodynamics. Astrophys. J. (2015). https://doi.org/10.1088/0004-637X/800/1/6

    Article  Google Scholar 

  87. S.P. Korzilius, W.H.A. Schilders, M.J.H. Anthonissen, An improved CSPM approach for accurate second-derivative approximations with SPH. J. Appl. Math. Phys. 5, 168–184 (2017)

    Article  Google Scholar 

  88. G.K. Batchelor, An introduction to fluid dynamics, 3rd edn. (Cambridge University Press, UK, 2000)

    Book  Google Scholar 

  89. S. Dey, Fluvial hydrodynamics—hydrodynamic and sediment transport phenomena (Springer-Verlag, Berlin Heidelberg, 2014)

    Google Scholar 

  90. Benz, W. (1989) “Smoothed particle hydrodynamics: a review.” NATO Workshop, Les; Arcs, France

  91. C.E. Rhoades, A fast algorithm for calculating particle interactions in smooth particle hydrodynamic simulations. Comput. Phys. Commun. 70, 478–482 (1992)

    Article  Google Scholar 

  92. J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, J.C. Marongiu, Neighbour lists in smoothed particle hydrodynamics. Int. J. Numer. Meth. Fluids 67, 2026–2042 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  93. J.J. Monaghan, Particle methods for hydrodynamics. Comput. Phys. Rep. 3(2), 71–124 (1985)

    Article  Google Scholar 

  94. G. Viccione, V. Bovolin, E.P. Carratelli, Defining and optimizing algorithms for neighbouring particle identification in SPH fluid simulations. Int. J. Numer. Methods Fluids 58, 625–638 (2008)

    Article  MATH  Google Scholar 

  95. J.J. Monaghan, R.A. Gingold, Shock simulation by the particle method SPH. J. Comput. Phys. 52, 374–389 (1983)

    Article  MATH  Google Scholar 

  96. R.W. Hockney, J.W. Eastwood, Computer simulations using particles (Adamhilger, New York, 1988)

    Book  MATH  Google Scholar 

  97. J.C. Simpson, Numerical techniques for three-dimensional smoothed particle hydrodynamics simulations: applications to accretion disks. Astrophys. J. 448, 822–831 (1995)

    Article  Google Scholar 

  98. L. Hernquist, N. Katz, TreeSPH- a unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70, 419–446 (1989)

    Article  Google Scholar 

  99. R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  100. Hirsch, C. (1988) Numerical computation of internal & external flows: fundamentals of numerical discretization, John Wiley & Sons, Inc.605 Third Ave. New York, NY United States, ISBN:978-0-471-91762-5

  101. J.J. Monaghan, On the problem of penetration in particle methods. J. Comput. Phys. 82, 1–15 (1989)

    Article  MATH  Google Scholar 

  102. J.J. Monaghan, A. Koss, Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng. 125, 145–155 (1999)

    Article  Google Scholar 

  103. M. Gómez-Gesteira, B.D. Rogers, A.J.C. Crespo, R.A. Dalrymple, M. Narayanaswamy, J.M. Dominguez, SPHysics–development of a free surface fluid solver–part 1: theory and formulations. Comput. Geosci. 48, 289–299 (2012)

    Article  Google Scholar 

  104. C. Zhang, M. Rezavand, X. Hu, Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2019.109135

    Article  MathSciNet  MATH  Google Scholar 

  105. L.T. da Silva, G.A. Giraldi, Fixed point implementation of a variational time integrator approach for smoothed particle hydrodynamics simulation of fluids. Comput. Math. Appl. (2019). https://doi.org/10.1016/j.camwa.2019.08.027

    Article  MATH  Google Scholar 

  106. H. Heywood, Measurement of the fineness of powdered materials. Proc. Inst. Mech. Eng. 140(1), 257–347 (1938)

    Article  Google Scholar 

  107. C.N. Davies, Particle-fluid interaction. J. Aerosol Sci. 10, 477–513 (1979)

    Article  Google Scholar 

  108. Eltawahni, H.A., and Yu, A.B. (2019) “Powder Processing: Models and Simulations.” Reference Module in Materials Science and Materials Engineering, Elsevier

  109. Jamshidi, R., Mazzei, L. (2018) “CFD Modeling of Fluidized Beds.” https://doi.org/10.1016/B978-0-12-409547-2.13698-4

  110. Gidaspow, D., Syamlal, M., Seo, Y. (1986) “Hydrodynamics of fluidization of single and binary size particles: Supercomputer modeling.” United States: Engineering Foundation

  111. Syamlal, M. (1987) “The particle–particle drag term in a multiparticle model of fluidization.” National Technical Information Service, DOE/MC/21353–2373, NTIS/DE87006500

  112. Drew, D.A., Passman, S.L. (1999) Theory of Multicomponent fluids. Springer-VerIag Berlin Heidelberg

  113. Felice, R.D. (2016) “Fluid Dynamic of Liquid–Solid Suspensions.” https://doi.org/10.1016/B978-0-12-409547-2.12184-5

  114. G.B. Wallis, One-dimensional two-phase flow (McGraw-Hill Companies, New York, NY, 1969)

    Google Scholar 

  115. R. Clift, J.R. Grace, M.E. Weber, Bubbles, drops and particles (Academic Press, New York, 1978), pp. 3–10

    Google Scholar 

  116. L.G. Gibilaro, Fluidization dynamics (Butterworth-Heinemann, Oxford, 2001)

    Google Scholar 

  117. Hergarten, S., Hinterkausen, M., Küpper, M. (2003) “Sediment transport — from grains to partial differential equations.” Dynamics of Multiscale Earth Systems, 97, ISBN: 978-3-540-41796-5

  118. K. Subramanya, Flow in open channels, 3rd edn. (The McGraw Hill Companies, 2009)

    Google Scholar 

  119. J.E. Abbott, J.R.D. Francis, Saltation and suspension trajectories of solid grains in a water stream. Philos. Trans. R. Soc. Lond. Ser. A 284(1321), 225–254 (1977)

    Article  Google Scholar 

  120. S.Z. Ali, S. Dey, Mechanics of advection of suspended particles in turbulent flow. Proc. R. Soc. A 472, 20160749 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  121. R.A. Bagnold, Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. A 255(1160), 49–63 (1954)

    Google Scholar 

  122. R.A. Bagnold, The flow of cohesionless grains in fluids. Philos. Trans. R. Soc. Lond. Ser. A 249(964), 315–319 (1956)

    MathSciNet  Google Scholar 

  123. J. Bosboom, M. Mol, A.J.H.M. Reniers, M.J.F. Stive, C.F. de Valk, Optimal sediment transport for morphodynamic model validation. Coast. Eng. 158, 103662 (2020)

    Article  Google Scholar 

  124. S.K. Bose, S. Dey, Reynolds averaged theory of turbulent shear flow over undulating beds and formation of sand waves. Phys. Rev. E 80, 036304 (2009)

    Article  Google Scholar 

  125. S.K. Bose, S. Dey, Suspended-load of sediment in flow on erodible beds. Int. J. Sedim. Res. 24(3), 315–324 (2009)

    Article  Google Scholar 

  126. S. Dey, R.V. Raikar, Characteristics of loose rough boundary streams at near-threshold. J. Hydraul. Eng. 133(3), 288–304 (2007)

    Article  Google Scholar 

  127. Einstein, H.A. (1950) “The bed-load function for sediment transportation in open channel flows.” Technical bulletin number 1026, United States Department of Agriculture, Soil Conservation Service, Washington DC.

  128. A. Kuriqi, G. Koçileri, M. Ardiçlioğlu, Potential of Meyer-Peter and Müller approach for estimation of bed-load sediment transport under different hydraulic regimes. Model. Earth Syst. Environ. 6, 129–137 (2020)

    Article  Google Scholar 

  129. A.F. Shields, Application of similarity principles and turbulence research to bed-load movement. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, Berlin 26, 5–24 (1936)

    Google Scholar 

  130. Z. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu, S. Li, An overview of smoothed particle hydrodynamics for simulating multiphase flow. Appl. Math. Model. 40, 9625–9655 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  131. J.J. Monaghan, A. Kocharyan, SPH simulation of multi-phase flow. Comput. Phys. Commun. 87, 225–235 (1995)

    Article  MATH  Google Scholar 

  132. X.Y. Hu, N.A. Adams, An incompressible multi-phase SPH method. J. Comput. Phys. 227, 264–278 (2007)

    Article  MATH  Google Scholar 

  133. Holmes, D.W., Williams, J.R., Tilke, P. (2009) “Smooth particle hydrodynamics for grain scale multi-phase fluid simulations.” International Conference on Particle based Methods, Barcelona

  134. Z. Chen, Z. Zong, M.B. Liu, L. Zou, H.T. Li, C. Shu, An SPH model for multiphase flows with complex interfaces and large density differences. J. Comput. Phys. 283, 169–188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  135. X. Yan, Y. Jiang, C. Li, R.R. Martin, S. Hu, Multiphase SPH simulation for interactive fluids and solids. ACM Trans. Graph. 35(4), 1–11 (2016)

    Google Scholar 

  136. F. Chiodi, P. Claudin, B. Andreotti, A two-phase flow model of sediment transport: transition from bedload to suspended load. J. Fluid Mech. 755, 561–581 (2014)

    Article  MathSciNet  Google Scholar 

  137. V.H. Bui, M.D. Bui, P. Rutschmann, Advanced numerical modeling of sediment transport in gravel-bed rivers. Water 11, 550 (2019)

    Article  Google Scholar 

  138. G. Chambon, R. Bouvarel, D. Laigle, M. Naaim, Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. J. Nonnewton. Fluid Mech. 166, 698–712 (2011)

    Article  MATH  Google Scholar 

  139. P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  140. Bui, H.H., Nguyen, G.D. (2019). “Numerical predictions of post‐flow behaviour of granular materials using an improved SPH model.” CIGOS 2019, Innovation for Sustainable Infrastructure, 895–900

  141. C.T. Nguyen, H.H. Bui, G.D. Nguyen, R. Fukagawa, A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation. Landslides 14(1), 1–13 (2016)

    Google Scholar 

  142. G. Fourtakas, B.D. Rogers, Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a graphics processing unit (GPU). Adv. Water Resour. (2016). https://doi.org/10.1016/j.advwatres.2016.04.009

    Article  Google Scholar 

  143. D.C. Drucker, W. Prager, Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10(2), 157–165 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  144. A.J.C. Crespo, M. Gomez-Gesteira, R.A. Dalrymple, Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Contin. 5(3), 173–184 (2007)

    MathSciNet  MATH  Google Scholar 

  145. A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro, O. García-Feal, DualSPHysics: open-source parallel cfd solver based on sph. Comput. Phys. Commun. 187, 204–216 (2015)

    Article  MATH  Google Scholar 

  146. E.H. Zubeldia, G. Fourtakas, B.D. Rogers, M.M. Farias, Multi-phase SPH model for simulation of erosion and scouring by means of the shields and Drucker-Prager criteria. Adv. Water Resour. 117, 98–114 (2018)

    Article  Google Scholar 

  147. H.H. Bui, R. Fukagawa, K. Sako, S. Ohno, Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Meth. Geomech. 32(12), 1537–1570 (2008)

    Article  MATH  Google Scholar 

  148. G. Bartzke, G. Fourtakas, R. Canelas, B.D. Rogers, K. Huhn, Simulation of flow past a sphere on a rough bed using smoothed particle hydrodynamics (SPH). Comput. Part. Mech. (2021). https://doi.org/10.1007/s40571-021-00417-x

    Article  Google Scholar 

  149. J. Kim, J. Lee, H. Jang, J. Byun, Y.S. Joo, Numerical investigation of scour by incompressible SPH coupled with coarse-grained DEM. Soil Dyn. Earthq. Eng. 151, 106998 (2021)

    Article  Google Scholar 

  150. A.M. Tartakovsky, P. Meakin, T.D. Scheibe, B.D. Wood, A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour. Res. 43, W05437 (2007). https://doi.org/10.1029/2005WR004770

    Article  Google Scholar 

  151. A.M. Aly, M. Asai, Modelling of non-Darcy flows through porous media using extended incompressible smoothed particle hydrodynamics. Numer. Heat Transf. Part B 67, 255–279 (2015)

    Article  Google Scholar 

  152. H.H. Bui, G.D. Nguyen, A coupled fluid-solid SPH approach to modelling flow through deformable porous media. Int. J. Solids Struct. 125, 244–264 (2017)

    Article  Google Scholar 

  153. H. Basser, M. Rudman, E. Daly, Smoothed particle hydrodynamics modelling of fresh and salt water dynamics in porous media. J. Hydrol. 576, 370–380 (2019)

    Article  Google Scholar 

  154. Syamsuri, M. Chern, N. Vaziri, Effect of porous media on hydraulic jump characteristics by using smooth particle hydrodynamics method. Int. J. Civ. Eng. 18, 367–379 (2020)

  155. D.W. Holmes, P. Pivonka, Novel pressure inlet and outlet boundary conditions for smoothed particle hydrodynamics, applied to real problems in porous media flow. J. Comput. Phys. 429, 110029 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  156. D. Violeau, S. Piccon, J.B. Chabard, Two attempts of turbulence modelling in smoothed particle hydrodynamics. Adv. Fluid Modell. Turbul. Meas. (2002). https://doi.org/10.1142/9789812777591_0041

    Article  Google Scholar 

  157. Hu, X.Y., Adams, N.A. (2015) “A SPH model for incompressible turbulence.” In: IUTAM Symposium on Particle Methods in Fluid Mechanics, Procedia IUTAM, 18, 66-75

  158. S.K. Tan, N.S. Cheng, Y. Xie, S. Shao, Incompressible SPH simulation of open channel flow over smooth bed. J. Hydro-Environ. Res. 9(3), 340–353 (2015)

    Article  Google Scholar 

  159. Kazemi, E., Tait, S., Shao, S., Nichols, A. (2016) “Potential application of mesh-free SPH method in turbulent river flows.” Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces, 34th International School of Hydraulics, May 2015, Zelechów, Poland. Springer Verlag, 11–22

  160. E. Kazemi, K. Koll, S. Tait, S. Shao, SPH modelling of turbulent open channel flow over and within natural gravel beds with rough interfacial boundaries. Adv. Water Resour. 140, 103557 (2020)

    Article  Google Scholar 

  161. R. Vacondio, C. Altomare, M. De Leffe, X. Hu, D. Le Touzé, S. Lind, J.C. Marongiu, S. Marrone, B.D. Rogers, A. Souto-Iglesias, Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput. Part. Mech. (2020). https://doi.org/10.1007/s40571-020-00354-1

    Article  Google Scholar 

  162. S.J. Lind, B.D. Rogers, P.K. Stansby, Review of smooth particle hydrodynamics: towards converged Lagrangian flow modelling. Proc. R. Soc. A (2020). https://doi.org/10.1098/rspa.2019.0801

    Article  MATH  Google Scholar 

  163. P.W. Cleary, M. Prakash, Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos. Trans. R. Soc. Lond. Ser. A 362, 2003–2030 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  164. R.B. Canelas, J.M. Domínguez, A.J.C. Crespo, M. Gomez-Gesteira, R.M.L. Ferreira, Resolved simulation of a granular-fluid flow with a coupled SPH-DCDEM Model. J. Hydraul. Eng. 143(9), 06017012 (2017)

    Article  Google Scholar 

  165. M.G. Trujillo-Vela, S.A. Galindo-Torres, X. Zhang, A.M. Ramos-Cañón, J.A. Escobar-Vargas, Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows. Comput. Geotech. 125, 103669 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the Institute Scheme for Innovative Research and Development (ISIRD) project from IIT Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhrangshu Purkayastha.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purkayastha, S., Afzal, M.S. Review of Smooth Particle Hydrodynamics and its Applications for Environmental Flows. J. Inst. Eng. India Ser. A 103, 921–941 (2022). https://doi.org/10.1007/s40030-022-00650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-022-00650-4

Keywords

Navigation