Skip to main content
Log in

Evolution of myoglobin diffusion mechanisms: exploring pore and surface diffusion in a single silica particle

  • Note
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study elucidates the mass transfer mechanism of myoglobin (Mb) within a single silica particle with a 50 nm pore size at various pH levels (6.0, 6.5, 6.8, and 7.0). Investigation of Mb distribution ratio (R) and distribution kinetics was conducted using absorption microspectroscopy. The highest R was observed at pH 6.8, near the isoelectric point of Mb, as the electrostatic repulsion between Mb molecules on the silica surface decreased. The time-course absorbance of Mb in the silica particle was rigorously analyzed based on a first-order reaction, yielding the intraparticle diffusion coefficient of Mb (Dp). Dp-(1 + R)−1 plots at different pH values were evaluated using the pore and surface diffusion model. Consequently, we found that at pH 6.0, Mb diffused in the silica particle exclusively through surface diffusion, whereas pore diffusion made a more substantial contribution at higher pH. Furthermore, we demonstrated that Mb diffusion was hindered by slow desorption, associated with the electrostatic charge of Mb. This comprehensive analysis provides insights into the diffusion mechanisms of Mb at acidic, neutral, and basic pH conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Y.-Z. Chen, R. Zhang, L. Jiao, H.-L. Jiang, Coord. Chem. Rev. 362, 1 (2018)

    Article  CAS  Google Scholar 

  2. J. Liang, Z. Liang, R. Zou, Y. Zhao, Adv. Mater. 29, 1701139 (2017)

    Article  Google Scholar 

  3. T.A. Esquivel-Castro, M.C. Ibarra-Alonso, J. Oliva, A. Martinez-Luevanos, Mater. Sci. Eng. C 96, 915 (2019)

    Article  CAS  Google Scholar 

  4. G. Ahuja, K. Pathak, Indian J. Pharm. Sci. 71, 599 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. He, F. Chen, B. Li, G. Qian, W. Zhou, B. Chen, Coord. Chem. Rev. 373, 167 (2018)

    Article  CAS  Google Scholar 

  6. L. Zhu, D. Shen, K.H. Luo, J. Hazard. Mater. 389, 122102 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. P. Wang, Q. Shi, Y. Shi, K.K. Clark, G.D. Stucky, A.A. Keller, J. Am. Chem. Soc. 131, 182 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. X. Geng, C. Wang, J. Chromatogr. B 849, 69 (2007)

    Article  CAS  Google Scholar 

  9. M. Tiemann, Chemistry 13, 8376 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. S. Ozdemir, J. Gole, Curr. Opin. Solid State Mater. Sci. 11, 92 (2007)

    Article  CAS  Google Scholar 

  11. J. Chen, L. Zhu, L. Ren, C. Teng, Y. Wang, B. Jiang, J. He, A.C.S. Appl, Bio. Mater. 1, 604 (2018)

    CAS  Google Scholar 

  12. A. Rimola, D. Costa, M. Sodupe, J.F. Lambert, P. Ugliengo, Chem. Rev. 113, 4216 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. E.L. Rodriguez, S. Poddar, S. Iftekhar, K. Suh, A.G. Woolfork, S. Ovbude, A. Pekarek, M. Walters, S. Lott, D.S. Hage, J. Chromatogr. B 1157, 122332 (2020)

    Article  CAS  Google Scholar 

  14. F. Gritti, G. Guiochon, J. Chromatogr. A 1302, 55 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. L. Yu, L. Zhang, Y. Sun, J. Chromatogr. A 1382, 118 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. K. Kondo, J. Miura, J. Colloid Interface Sci. 177, 214 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. T. Itoh, R. Ishii, T. Ebina, T. Hanaoka, Y. Fukushima, F. Mizukami, Bioconjugate Chem. 17, 236 (2006)

    Article  CAS  Google Scholar 

  18. S.T. Moerz, P. Huber, Langmuir 30, 2729 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. A. Vinu, V. Murugesan, O. Tangermann, M. Hartmann, Chem. Mater. 16, 3056 (2004)

    Article  CAS  Google Scholar 

  20. P.H. Pandya, R.V. Jasra, B.L. Newalkar, P.N. Bhatt, Microporous Mesoporous Mater. 77, 67 (2005)

    Article  CAS  Google Scholar 

  21. A.M. Clemments, P. Botella, C.C. Landry, A.C.S. Appl, Mater. Interfaces 7, 21682 (2015)

    Article  CAS  Google Scholar 

  22. J.R. Conder, B.O. Hayek, BioChem. Eng. J. 6, 225 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. B. Coquebert de Neuville, A. Tarafder, M. Morbidelli, J. Chromatogr. A 1298, 26 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. A. Yamaguchi, K. Taki, J. Kijima, Y. Edanami, Y. Shibuya, Anal. Sci. 34, 1393 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. A. Yamaguchi, C. Kashimura, M. Aizawa, Y. Shibuya, ACS Omega 5, 22993 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Aizawa, H. Iwase, T. Kamijo, A. Yamaguchi, J. Phys. Chem. Lett. 13, 8684 (2022)

    Article  CAS  PubMed  Google Scholar 

  27. S. Emond, D. Guieysse, S. Lechevallier, J. Dexpert-Ghys, P. Monsan, M. Remaud-Simeon, Chem. Commun. 48, 1314 (2012)

    Article  CAS  Google Scholar 

  28. D.M. Schlipf, S.E. Rankin, B.L. Knutson, A.C.S. Appl, Mater. Interfaces 5, 10111 (2013)

    Article  CAS  Google Scholar 

  29. K. Nakatani, T. Sekine, Langmuir 16, 9256 (2000)

    Article  CAS  Google Scholar 

  30. K. Nakatani, E. Matsuta, Anal. Sci. 31, 557 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. A. Miyagawa, N. Hayashi, Y. Kuzure, T. Takahashi, H. Iwamoto, T. Arai, S. Nagatomo, Y. Miyazaki, K. Hasegawa, Y. Sano, K. Nakatani, Bull. Chem. Soc. Jpn 96, 671 (2023)

    Article  CAS  Google Scholar 

  32. T. Sato, K. Hata, K. Nakatani, Anal. Sci. 33, 647 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. H. Kakizaki, C. Aonuma, K. Nakatani, J. Colloid Interface Sci. 307, 166 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. K. Nakatani, T. Uchida, N. Kitamura, H. Masuhara, J. Electroanal. Chem. 375, 383 (1994)

    Article  CAS  Google Scholar 

  35. T. Sekine, K. Nakatani, Chem. Lett. 33, 600 (2004)

    Article  CAS  Google Scholar 

  36. A. Miyagawa, S. Nagatomo, H. Kazami, T. Terada, K. Nakatani, Langmuir 37, 12697 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. A. Miyagawa, S. Nagatomo, H. Kuno, T. Terada, K. Nakatani, Langmuir 39, 11329 (2023)

    Article  CAS  PubMed  Google Scholar 

  38. D. Puett, J. Biol. Chem. 248, 4623 (1973)

    Article  CAS  PubMed  Google Scholar 

  39. M. van der Veen, W. Norde, M.C. Stuart, Colloids Surf. B 35, 33 (2004)

    Article  Google Scholar 

  40. J.A. Beeley, S.M. Stevenson, J.G. Beeley, Biochim. Biophys. Acta 285, 293 (1972)

    Article  CAS  PubMed  Google Scholar 

  41. J.G. Lee, K. Lannigan, W.A. Shelton, J. Meissner, B. Bharti, Langmuir 36, 14157 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. G. Nagy, G. Denualt, J. Electroanal. Chem. 433, 175 (1997)

    Article  CAS  Google Scholar 

  43. B. Bujalski, F.F. Cantwell, Langmuir 17, 7710 (2001)

    Article  CAS  Google Scholar 

  44. M. Yu, T.C. Silva, A. van Opstal, S. Romeijn, H.A. Every, W. Jiskoot, G.J. Witkamp, M. Ottens, Biophys. J. 116, 595 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. T. Sato, K. Nakatani, Anal. Sci. 33, 179 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. E.M. Renkin, J. Gen. Physiol. Gen. Physiol. 38, 225 (1954)

    CAS  Google Scholar 

  47. S. Longeville, W. Doster, G. Kali, Chem. Phys. 292, 413 (2003)

    Article  CAS  Google Scholar 

  48. K. Lyu, H. Chen, J. Gao, J. Jin, H. Shi, D.K. Schwartz, D. Wang, Biomacromol 33, 4709 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Early-Career Scientists to A.M. (23K13771), Scientific Research (C) to S.N. (20K03877), and Scientific Research (C) to K.N. (21K05107) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shigenori Nagatomo or Kiyoharu Nakatani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagawa, A., Kuno, H., Nagatomo, S. et al. Evolution of myoglobin diffusion mechanisms: exploring pore and surface diffusion in a single silica particle. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00575-x

Keywords

Navigation