Skip to main content
Log in

Comparison of the fluctuations of the signals measured by ICP-MS after laser ablation of powdered geological materials prepared by four methods

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Sample preparation is a crucial point for quantitative multi-elemental analses by LA-ICP-MS of powdered geological materials. Four different methods are compared in this study with respect to signal stability and intensity as follows: the preparation of glass beads (GlassB) by alkaline fusion method and three grinding and pelletizing methods relying on the use of an organic binder (VanBind, vanillic acid), an adhesive binder (MixGlue, methyl methacrylate) and a sol–gel process for glass formation (SolGel, chemical reaction of tetraethoxysilane), respectively. Sixty elements were analyzed by means of a ns-UV (213 nm) laser ablation system coupled to a single collector sector field ICP-MS with a low or medium mass resolution. Signal stability was found to strongly depend on the sample homogeneity provided by the preparation method. These methods were applied to three geological standard materials (CRM). The following criteria were used to evaluate and compare the methods: (1) proportion of the measurement cycles which are above a given signal intensity threshold (defined here as signal average ± 3 times the standard deviation), (2) signal stability of the analyzed nuclides (internal precision estimated by the relative standard deviations on raw count rates), (3) signal stability of the internal standards added to the samples, (4) external precision estimated by the relative standard deviation over five preparations for each geological CRM. For the majority of the analyzed elements, signals measured for samples prepared with the four methods are reproducible. Specific contamination in one or several elements (Cr, Fe, Co, Ni, Cu, Mo, W, Au and Bi) was observed depending on the sample preparation method. In addition, compared to grinding made with PTFE material, grinding performed with tungsten carbide material was found to produce better homogeneity, especially for the sol–gel and mixing with glue protocols, although some metallic contamination (W and Co) was observed. Thanks to the suppression of grain effects by alkaline melting, the glass bead method systematically provided signal stability and percentage of “over the threshold” close to those of the NIST glasses. This may be explained by the preparation of more homogeneous samples by alkaline melting. Finally, the described methods were found to be reproducible for the majority of the analyzed elements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. F. Nehring, D.E. Jacob, M.G. Barth, S.F. Foley, Laser-ablation ICP-MS analysis of siliceous rock glasses fused on an iridium strip heater using MgO dilution. Microchim Acta 160(1–2), 153–163 (2008). https://doi.org/10.1007/s00604-007-0819-7

    Article  CAS  Google Scholar 

  2. J.S. Fedorowich, J.P. Richards, J.C. Jain, R. Kerrich, J. Fan, A rapid method for REE and trace-element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chem. Geol. 106(3–4), 229–249 (1993). https://doi.org/10.1016/0009-2541(93)90029-I

    Article  CAS  Google Scholar 

  3. M. Petrelli, D. Perugini, G. Poli, A. Peccerillo, Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS. Microchim Acta 158(3–4), 275–282 (2007). https://doi.org/10.1007/s00604-006-0731-6

    Article  CAS  Google Scholar 

  4. V. Kanicky, J.-M. Mermet, Use of a single calibration graph for the determination of major elements in geological materials by laser ablation inductively coupled plasma atomic emission spectrometry with added internal standards. Fr. J. Anal. Chem. 363(3), 294–299 (1999). https://doi.org/10.1007/s002160051191

    Article  CAS  Google Scholar 

  5. S.A. Baker, M. Bi, R.Q. Aucelio, B.W. Smith, J.D. Winefordner, Analysis of soil and sediment samples by laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 14(1), 19–26 (1999). https://doi.org/10.1039/a804060e

    Article  CAS  Google Scholar 

  6. D. Günther, A.V. Quadt, R. Wirz, H. Cousin, V.J. Dietrich, Elemental analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of geological samples fused with Li 2 B 4 O 7 and calibrated without matrix-matched standards. Microchim. Acta 136(3–4), 101–107 (2001). https://doi.org/10.1007/s006040170038

    Article  Google Scholar 

  7. I. Hubová, M. Holá, J. Pinkas, V. Kanický, Examination of sol–gel technique applicability for preparation of pellets for soil analysis by laser ablation inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. 22(10), 1238–1243 (2007). https://doi.org/10.1039/b701555k

    Article  CAS  Google Scholar 

  8. B. Fernández, F. Claverie, C. Pécheyran, O.F.X. Donard, Solid-spiking isotope dilution laser ablation ICP-MS for the direct and simultaneous determination of trace elements in soils and sediments. J. Anal. At. Spectrom. 23(3), 367–377 (2008). https://doi.org/10.1039/B711247E

    Article  Google Scholar 

  9. K. Ito et al., LA-ICP-MS analysis of pressed powder pellets to luminescence geochronology. Chem. Geol. 262(3–4), 131–137 (2009). https://doi.org/10.1016/j.chemgeo.2009.01.003

    Article  CAS  Google Scholar 

  10. L. Arroyo, T. Trejos, P.R. Gardinali, J.R. Almirall, Optimization and validation of a laser ablation inductively coupled plasma mass spectrometry method for the routine analysis of soils and sediments. Spectrochim. Acta Part B At. Spectrosc. 64(1), 16–25 (2009). https://doi.org/10.1016/j.sab.2008.10.027

    Article  CAS  Google Scholar 

  11. K.P. Jochum et al., Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 318–319, 31–44 (2012). https://doi.org/10.1016/j.chemgeo.2012.05.009

    Article  CAS  Google Scholar 

  12. J. Malherbe, F. Claverie, A. Alvarez, B. Fernandez, R. Pereiro, J.L. Molloy, Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 793, 72–78 (2013). https://doi.org/10.1016/j.aca.2013.07.031

    Article  CAS  PubMed  Google Scholar 

  13. M.S. de la Torre et al., Applying ED-XRF and LA-ICP-MS to geochemically characterize chert. The case of the Central-Eastern Pre-Pyrenean lacustrine cherts and their presence in the Magdalenian of NE Iberia. J. Archaeol. Sci. Rep. 13, 88–98 (2017). https://doi.org/10.1016/j.jasrep.2017.03.037

    Article  Google Scholar 

  14. V.M. Neves, G.M. Heidrich, F.B. Hanzel, E.I. Muller, V.L. Dressler, Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry. Chemosphere 198, 409–416 (2018). https://doi.org/10.1016/j.chemosphere.2018.01.165

    Article  CAS  PubMed  Google Scholar 

  15. A.M. Horne, M.C. van Soest, K.V. Hodges, A. Tripathy-Lang, J.K. Hourigan, Integrated single crystal laser ablation U/Pb and (U–Th)/He dating of detrital accessory minerals – proof-of-concept studies of titanites and zircons from the Fish Canyon tuff. Geochimi. Cosmochim. Acta 178, 106–123 (2016). https://doi.org/10.1016/j.gca.2015.11.044

    Article  CAS  Google Scholar 

  16. T.L. Spano, A. Simonetti, E. Balboni, C. Dorais, P.C. Burns, Trace element and U isotope analysis of uraninite and ore concentrate: Applications for nuclear forensic investigations. Appl. Geochem. 84, 277–285 (2017). https://doi.org/10.1016/j.apgeochem.2017.07.003

    Article  CAS  Google Scholar 

  17. S.V. Jovanovic, T. Kell, J. El-Haddad, C. Cochrane, C. Drummond, A. El-Jaby, Trace analysis of uranium ore concentrates using laser ablation inductively coupled plasma mass spectrometry for nuclear forensics. J Radioanal. Nucl. Chem. (2020). https://doi.org/10.1007/s10967-019-06991-y

    Article  Google Scholar 

  18. P. Lach, J. Mercadier, J. Dubessy, M.-C. Boiron, M. Cuney, In situ quantitative measurement of rare earth elements in uranium oxides by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. (2013). https://doi.org/10.1111/j.1751-908X.2012.00161.x

    Article  Google Scholar 

  19. W.D. Stoner, The analytical nexus of ceramic paste composition studies: A comparison of NAA, LA-ICP-MS, and petrography in the prehispanic Basin of Mexico. J. Archaeol. Sci. 76, 31–47 (2016). https://doi.org/10.1016/j.jas.2016.10.006

    Article  CAS  Google Scholar 

  20. B. Siqin, Q.-H. Li, F.-X. Gan, Analysis of some chinese potash glass by laser ablation-inductively coupled plasma-atomic emission spectrometry and laser ablation-inductively coupled plasma-mass spectrometry. Chin. J. Anal. Chem. (2013). https://doi.org/10.1016/S1872-2040(13)60678-7

    Article  Google Scholar 

  21. S.M. Eggins, Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostand. Geoanal. Res. (2003). https://doi.org/10.1111/j.1751-908X.2003.tb00642.x

    Article  Google Scholar 

  22. G. Bauer, A. Limbeck, Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation. Spectrochim. Acta Part B At. Spectrosc. 113, 63–69 (2015). https://doi.org/10.1016/j.sab.2015.09.007

    Article  CAS  Google Scholar 

  23. A.L. Gray, Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst (1985). https://doi.org/10.1039/an9851000551

    Article  Google Scholar 

  24. C. O’Connor, M.R. Landon, B.L. Sharp, Absorption coefficient modified pressed powders for calibration of laser ablation inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 22(3), 273–282 (2007). https://doi.org/10.1039/B612512C

    Article  Google Scholar 

  25. G. Steinhoefel, J. Breuer, F. von Blanckenburg, I. Horn, D. Kaczorek, M. Sommer, Micrometer silicon isotope diagnostics of soils by UV femtosecond laser ablation. Chem. Geol.. (2011). https://doi.org/10.1016/j.chemgeo.2011.05.013

    Article  Google Scholar 

  26. I. Hubová, M. Holá, J. Pinkas, V. Kanický, Examination of sol–gel technique applicability for preparation of pellets for soil analysis by laser ablation inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. (2007). https://doi.org/10.1039/b701555k

    Article  Google Scholar 

  27. A.J. Fitzpatrick, T. Kurtis Kyser, D. Chipley, D. Beauchemin, Fabrication of solid calibration standards by a sol–gel process and use in laser ablation ICPMS. J. Anal. At. Spectrom. (2008). https://doi.org/10.1039/B712366C

    Article  Google Scholar 

  28. W.C. Davis, S.J. Christopher, G.C. Turk, Simultaneous mass bias and fractionation corrections utilizing isotopic solid standards and laser ablation ICPMS. Anal. Chem. (2005). https://doi.org/10.1021/ac050872p

    Article  PubMed  Google Scholar 

  29. W. Klemm, G. Bombach, A simple method of target preparation for the bulk analysis of powder samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Fr. J. Anal. Chem. (2001). https://doi.org/10.1007/s002160100848

    Article  Google Scholar 

  30. D. Garbe-Schönberg, S. Müller, Nano-particulate pressed powder tablets for LA-ICP-MS. J. Anal. At. Spectrom. 29(6), 990–1000 (2014). https://doi.org/10.1039/C4JA00007B

    Article  Google Scholar 

  31. K.P. Jochum et al., Nano-powdered calcium carbonate reference materials: significant progress for microanalysis? Geostand. Geoanal. Res. 43(4), 595–609 (2019). https://doi.org/10.1111/ggr.12292

    Article  Google Scholar 

  32. S.C. Jantzi, J.R. Almirall, Elemental analysis of soils using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS) with multivariate discrimination: tape mounting as an alternative to pellets for small forensic transfer specimens. Appl Spectrosc (2014). https://doi.org/10.1366/13-07351

    Article  PubMed  Google Scholar 

  33. L.P. Bédard, D.R. Baker, N. Machado, A new technique for the synthesis of geochemical reference samples for laser ablation-ICP-MS analysis of zircons. Chem. Geol. (1997). https://doi.org/10.1016/S0009-2541(96)00169-6

    Article  Google Scholar 

  34. M. Pakieła, M. Wojciechowski, B. Wagner, E. Bulska, A novel procedure of powdered samples immobilization and multi-point calibration of LA ICP MS. J. Anal. At. Spectrom. (2011). https://doi.org/10.1039/c0ja00201a

    Article  Google Scholar 

  35. W. Zhang et al., Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry. Anal. Chim. Acta 983, 149–159 (2017). https://doi.org/10.1016/j.aca.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  36. S. Wu, V. Karius, B.C. Schmidt, K. Simon, G. Wörner, Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. (2018). https://doi.org/10.1111/ggr.12230

    Article  PubMed  PubMed Central  Google Scholar 

  37. C. Simons et al., Comparative study on the homogeneity of polymeric calibration materials using LA-ICP-MS. J. Anal. At. Spectrom. 23(7), 1038 (2008). https://doi.org/10.1039/b719145f

    Article  CAS  Google Scholar 

  38. M. Thompson, J.E. Goulter, F. Sieper, Laser ablation for the introduction of solid samples into an inductively coupled plasma for atomic-emission spectrometry. Analyst 106(1258), 32 (1981). https://doi.org/10.1039/an9810600032

    Article  CAS  Google Scholar 

  39. S.E. Gilbert et al., Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS. J. Anal. At. Spectrom. 29(6), 1042–1051 (2014). https://doi.org/10.1039/C4JA00011K

    Article  CAS  Google Scholar 

  40. D.G. Reading, I.W. Croudace, P.E. Warwick, Fusion bead procedure for nuclear forensics employing synthetic enstatite to dissolve uraniferous and other challenging materials prior to laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. (2017). https://doi.org/10.1021/acs.analchem.7b00558

    Article  PubMed  Google Scholar 

  41. D. Peters, T. Pettke, Evaluation of major to ultra trace element bulk rock chemical analysis of nanoparticulate pressed powder pellets by LA-ICP-MS. Geostand. Geoanal. Res. 41(1), 5–28 (2017). https://doi.org/10.1111/ggr.12125

    Article  CAS  Google Scholar 

  42. R. Hinton, B. Harte, G. Witt-Eickschen, Ion probe measurements of national institute of standards and technology standard reference material SRM 610 glass, trace elements. Analyst 120, 1315–1319 (1995)

    Article  CAS  Google Scholar 

  43. J. Kane, A history of the development and certification of NIST glass SRMs 610–617. Geostand. Newsl. J. Geostand. Geoanaly. 22(1), 7–13 (1998)

    Article  CAS  Google Scholar 

  44. M. Motelica-Heino, S. Rauch, G.M. Morrison, O.F.X. Donard, Determination of palladium, platinum and rhodium concentrations in urban road sediments by laser ablation-ICP-MS. Anal. Chim. Acta 436(2), 233–244 (2001). https://doi.org/10.1016/S0003-2670(01)00967-9

    Article  CAS  Google Scholar 

  45. R.E. Russo, X.L. Mao, C. Liu, J. Gonzalez, Laser assisted plasma spectrochemistry: laser ablation. J. Anal. At. Spectrom. (2004). https://doi.org/10.1039/b403368j

    Article  Google Scholar 

  46. J. González, C. Liu, X. Mao, R.E. Russo, UV-femtosecond laser ablation-ICP-MS for analysis of alloy samples. J. Anal. At. Spectrom. 19(9), 1165–1168 (2004). https://doi.org/10.1039/B403205E

    Article  Google Scholar 

  47. M. Neuilly, Modelling and estimation of measurement errors. Meas. Sci. Technol. 11, 1825 (2000). https://doi.org/10.1088/0957-0233/11/12/701

    Article  Google Scholar 

  48. U. Fano, Ionization yield of radiations. II. The fluctuations of the number of ions. Phys. Rev. 72(1), 1 (1947). https://doi.org/10.1103/PhysRev.72.26

    Article  Google Scholar 

  49. V. Bora et al., Estimation of Fano factor in inorganic scintillators from time correlations. in 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (San Diego, CA, USA, 2015), pp. 1–3. https://doi.org/10.1109/NSSMIC.2015.7581943

  50. M. Guillong, I. Horn, D. Günther, A comparison of 266 nm, 213 nm and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. J. Anal. At. Spectrom. 18(10), 10 (2003). https://doi.org/10.1039/B305434A

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed with financial backing of a PhD thesis from Orano Mining and the CEA/DAM/DIF. The authors would like to express their gratitude to Valérie Granger, Mike Maury and Magali Celier (Orano Mining, CIME) for the main lines of the alkaline fusion protocol, the formation on the Katanax X-Fluxer X-600 and of their reception during the preparation of the glass beads. Authors would thank Olivier Marie (CEA, DAM/DIF) for the MEB imaging. Authors would also thank Aurélie Diacre (CEA, DAM/DIF and LSCE) for the laser granulometry measurements. Finally, authors express their gratitude to the two anonymous reviewers for their time and their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

MS: writing—original draft, data curation, formal analysis, software, investigation. AL–G: data curation, formal analysis, investigation. A-CH: methodology, writing review and editing, supervision. FP: methodology, writing review and editing, supervision. CP: methodology, writing review and editing, supervision.

Corresponding author

Correspondence to Michaël Susset.

Ethics declarations

Conflict of interest

There are no competing interests to declare.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susset, M., Leduc--Gauthier, A., Humbert, AC. et al. Comparison of the fluctuations of the signals measured by ICP-MS after laser ablation of powdered geological materials prepared by four methods. ANAL. SCI. 39, 999–1014 (2023). https://doi.org/10.1007/s44211-023-00309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00309-5

Keywords

Navigation