Skip to main content
Log in

A simple and fast method for measurement of elemental impurities in powdered U-oxide materials by means of ns-UV laser ablation coupled to a sector-field ICP-MS

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The determination of elemental impurities in uranium ore concentrates (UOCs) is of great importance in the fields of nuclear forensics and nuclear safeguards and more generally for the nuclear industry. To avoid the use of chemical reagents, prevent waste generation, and reduce the duration of the analysis, a simple method based on sample preparation involving the conversion of UOCs into glass beads by alkaline fusion followed by direct measurement by laser ablation—sector-field ICP-MS (LA-ICP-MS) is proposed. External calibration was performed with a mix of UOCs and geological standard reference materials. Accurate results were obtained for most of the 48 elements of interest in six UOC materials. The lowest detection limits are in the ng g−1 range. With this method, concentrations of a wide range of elements can be determined within 24 h.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Spano TL, Simonetti A, Balboni E et al (2017) Trace element and U isotope analysis of uraninite and ore concentrate: applications for nuclear forensic investigations. Appl Geochem 84:277–285. https://doi.org/10.1016/j.apgeochem.2017.07.003

    Article  ADS  CAS  Google Scholar 

  2. Jovanovic SV, Kell T (2021) Nuclear forensic analysis with laser ablation inductively coupled plasma mass spectrometry in CMX-6. J Radioanal Nucl Chem 329:319–326. https://doi.org/10.1007/s10967-021-07773-1

    Article  CAS  Google Scholar 

  3. Mercadier J, Cuney M, Lach P et al (2011) Origin of uranium deposits revealed by their rare earth element signature: origin of U deposits revealed by the rare earth elements. Terra Nova 23:264–269. https://doi.org/10.1111/j.1365-3121.2011.01008.x

    Article  ADS  CAS  Google Scholar 

  4. El Haddad J, Harhira A, Blouin A et al (2018) Discrimination of uranium ore concentrates by chemometric data analysis to support provenance assessment for nuclear forensics applications. J Radioanal Nucl Chem 317:625–632. https://doi.org/10.1007/s10967-018-5912-3

    Article  CAS  Google Scholar 

  5. Donard A, Pottin A-C, Pointurier F, Pécheyran C (2015) Determination of relative rare earth element distributions in very small quantities of uranium ore concentrates using femtosecond UV laser ablation – SF-ICP-MS coupling. J Anal At Spectrom 30:2420–2428. https://doi.org/10.1039/C5JA00309A

    Article  CAS  Google Scholar 

  6. Gadd PS, Marshall KM, Blagojevic N (2001) Combining analytical techniques for trace elements in uranium oxide (U3O8). In: Conference Handbook - Fourth Conference on Nuclear Science & Engineering in Australia. pp 146–149

  7. Crain JS, Gallimore DL (1992) Determination of trace impurities in uranium oxides by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 7:605. https://doi.org/10.1039/ja9920700605

    Article  CAS  Google Scholar 

  8. Reading DG, Croudace IW, Warwick PE (2017) Fusion bead procedure for nuclear forensics employing synthetic enstatite to dissolve uraniferous and other challenging materials prior to laser ablation inductively coupled plasma mass spectrometry. Anal Chem 89:6006–6014. https://doi.org/10.1021/acs.analchem.7b00558

    Article  CAS  PubMed  Google Scholar 

  9. Jovanovic SV, Kell T, El-Haddad J et al (2020) Trace analysis of uranium ore concentrates using laser ablation inductively coupled plasma mass spectrometry for nuclear forensics. J Radioanal Nucl Chem 323:831–838. https://doi.org/10.1007/s10967-019-06991-y

    Article  CAS  Google Scholar 

  10. Weyer S, Münker C, Rehkämper M, Mezger K (2002) Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chem Geol 187:295–313. https://doi.org/10.1016/S0009-2541(02)00129-8

    Article  ADS  CAS  Google Scholar 

  11. Pretorius W, Weis D, Williams G et al (2006) Complete trace elemental characterisation of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively coupled plasma-mass spectrometry. Geostand Geoanalyt Res 30:39–54. https://doi.org/10.1111/j.1751-908X.2006.tb00910.x

    Article  CAS  Google Scholar 

  12. Eggins SM, Woodhead JD, Kinsley LPJ et al (1997) A simple method for the precise determination of ≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134:311–326. https://doi.org/10.1016/S0009-2541(96)00100-3

    Article  ADS  CAS  Google Scholar 

  13. LeBlanc KL, Nadeau K, Meija J et al (2022) Collaborative study for certification of trace elements in uranium ore concentrate CRMs UCLO-1, UCHI-1, and UPER-1. J Radioanal Nucl Chem 331:4031–4045. https://doi.org/10.1007/s10967-022-08446-3

    Article  CAS  Google Scholar 

  14. Balboni E, Simonetti A, Spano T et al (2017) Rare-earth element fractionation in uranium ore and its U(VI) alteration minerals. Appl Geochem 87:84–92. https://doi.org/10.1016/j.apgeochem.2017.10.007

    Article  ADS  CAS  Google Scholar 

  15. Varga Z, Katona R, Stefánka Z et al (2010) Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta 80:1744–1749. https://doi.org/10.1016/j.talanta.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  16. Petrelli M, Perugini D, Poli G, Peccerillo A (2007) Graphite electrode lithium tetraborate fusion for trace element determination in bulk geological samples by laser ablation ICP-MS. Microchim Acta 158:275–282. https://doi.org/10.1007/s00604-006-0731-6

    Article  CAS  Google Scholar 

  17. Park C-S, Shin HS, Oh H et al (2016) Trace element analysis of whole-rock glass beads of geological reference materials by Nd:YAG UV 213 nm LA-ICP-MS. J Anal Sci Technol 7:15. https://doi.org/10.1186/s40543-016-0094-5

    Article  CAS  Google Scholar 

  18. Arroyo L, Trejos T, Gardinali PR, Almirall JR (2009) Optimization and validation of a laser ablation inductively coupled plasma mass spectrometry method for the routine analysis of soils and sediments. Spectrochim Acta, Part B 64:16–25. https://doi.org/10.1016/j.sab.2008.10.027

    Article  ADS  CAS  Google Scholar 

  19. Bauer G, Limbeck A (2015) Quantitative analysis of trace elements in environmental powders with laser ablation inductively coupled mass spectrometry using non-sample-corresponding reference materials for signal evaluation. Spectrochim Acta, Part B 113:63–69. https://doi.org/10.1016/j.sab.2015.09.007

    Article  ADS  CAS  Google Scholar 

  20. Baker SA, Bi M, Aucelio RQ et al (1999) Analysis of soil and sediment samples by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 14:19–26. https://doi.org/10.1039/a804060e

    Article  CAS  Google Scholar 

  21. Neves VM, Heidrich GM, Hanzel FB et al (2018) Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry. Chemosphere 198:409–416. https://doi.org/10.1016/j.chemosphere.2018.01.165

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Klemm W, Bombach G (2001) A simple method of target preparation for the bulk analysis of powder samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Fresenius’ J Anal Chem 370:641–646. https://doi.org/10.1007/s002160100848

    Article  CAS  PubMed  Google Scholar 

  23. Kanicky V, Mermet J-M (1999) Use of a single calibration graph for the determination of major elements in geological materials by laser ablation inductively coupled plasma atomic emission spectrometry with added internal standards. Fresenius’ J Anal Chem 363:294–299. https://doi.org/10.1007/s002160051191

    Article  CAS  Google Scholar 

  24. Günther DV, Quadt A, Wirz R et al (2001) Elemental analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of geological samples fused with Li 2 B 4 O 7 and calibrated without matrix-matched standards. Microchimica Acta 136:101–107. https://doi.org/10.1007/s006040170038

    Article  Google Scholar 

  25. Malherbe J, Claverie F, Alvarez A et al (2013) Elemental analyses of soil and sediment fused with lithium borate using isotope dilution laser ablation-inductively coupled plasma-mass spectrometry. Anal Chim Acta 793:72–78. https://doi.org/10.1016/j.aca.2013.07.031

    Article  CAS  PubMed  Google Scholar 

  26. Yu Z, Norman MD, Robinson P (2003) Major and trace element analysis of silicate rocks by XRF and laser ablation ICP-MS using lithium borate fused glasses: matrix effects, instrument response and results for international reference materials. Geostand Geoanal Res 27:67–89. https://doi.org/10.1111/j.1751-908X.2003.tb00713.x

    Article  CAS  Google Scholar 

  27. Eggins SM (2003) Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostand Geoanal Res 27:147–162. https://doi.org/10.1111/j.1751-908X.2003.tb00642.x

    Article  CAS  Google Scholar 

  28. Zhang SY, Zhang HL, Hou Z et al (2019) Rapid determination of trace element compositions in peridotites by LA - ICP - MS using an albite fusion method. Geostand Geoanal Res 43:93–111. https://doi.org/10.1111/ggr.12240

    Article  CAS  Google Scholar 

  29. Monsels DA, Van Bergen MJ, Mason PRD (2018) Determination of trace elements in bauxite using laser ablation-inductively coupled plasma-mass spectrometry on lithium borate glass beads. Geostand Geoanal Res 42:239–251. https://doi.org/10.1111/ggr.12206

    Article  CAS  Google Scholar 

  30. Trejos T, Almirall JR (2004) Effect of fractionation on the forensic elemental analysis of glass using laser ablation inductively coupled plasma mass spectrometry. Anal Chem 76:1236–1242. https://doi.org/10.1021/ac0349330

    Article  CAS  PubMed  Google Scholar 

  31. Figg D, Kahr MS (1997) Elemental fractionation of glass using laser ablation inductively coupled plasma mass spectrometry. Appl Spectrosc 51:1185–1192. https://doi.org/10.1366/0003702971941728

    Article  ADS  CAS  Google Scholar 

  32. Figg DJ, Cross JB, Brink C (1998) More investigations into elemental fractionation resulting from laser ablation–inductively coupled plasma–mass spectrometry on glass samples. Appl Surf Sci 127–129:287–291. https://doi.org/10.1016/S0169-4332(97)00644-2

    Article  ADS  Google Scholar 

  33. Chen Z (1999) Inter-element fractionation and correction in laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 14:1823–1828. https://doi.org/10.1039/A903272J

    Article  CAS  Google Scholar 

  34. Susset M, Leduc-Gauthier A, Humbert A-C et al (2023) Comparison of the fluctuations of the signals measured by ICP-MS after laser ablation of powdered geological materials prepared by four methods. ANAL SCI 39:999–1014. https://doi.org/10.1007/s44211-023-00309-5

    Article  CAS  PubMed  Google Scholar 

  35. Mermet J-M (2010) Calibration in atomic spectrometry: A tutorial review dealing with quality criteria, weighting procedures and possible curvatures. Spectrochim Acta, Part B 65:509–523. https://doi.org/10.1016/j.sab.2010.05.007

    Article  ADS  CAS  Google Scholar 

  36. Le Petit G, Granier G (2002) Spectrométrie gamma appliquée aux échantillons de l’environnement: Dossier de recommandations pour l’optimisation des mesures. Editions Tech & Doc, Paris

    Google Scholar 

  37. Ansoborlo É, Aupiais J, Baglan N (2012) Mesure du rayonnement alpha: dossier de recommandations pour l’optimisation des mesures. Éd. Tec & doc, Paris

    Google Scholar 

  38. Nuclear Forensic International Technical Working Group (2021) INFL Guideline on a Graded Nuclear Forensics Decision Framework

  39. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    MathSciNet  Google Scholar 

  40. Budinger PA, Drenski TL, Varnes AW, Mooney JR (1980) The case of the great yellow cake caper. Anal Chem 52:942–948

    Article  Google Scholar 

  41. Orlov VA (2004) Illicit nuclear trafficking and the new agenda. IAEA Bull 46:53–56

    Google Scholar 

  42. Varga Z, Wallenius M, Mayer K, Meppen M (2011) Analysis of uranium ore concentrates for origin assessment. Radiochim Acta 1:1–4. https://doi.org/10.1524/rcpr.2011.0004

    Article  CAS  Google Scholar 

  43. Keegan E, Kristo MJ, Colella M et al (2014) Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia. Forensic Sci Int 240:111–121. https://doi.org/10.1016/j.forsciint.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  44. Sirven J-B, Pailloux A, M’Baye Y et al (2009) Towards the determination of the geographical origin of yellow cake samples by laser-induced breakdown spectroscopy and chemometrics. J Anal At Spectrom 24:451. https://doi.org/10.1039/b821405k

    Article  CAS  Google Scholar 

  45. Švedkauskaitė-LeGore J, Rasmussen G, Abousahl S, van Belle P (2008) Investigation of the sample characteristics needed for the determination of the origin of uranium-bearing materials. J Radioanal Nucl Chem 278:201–209. https://doi.org/10.1007/s10967-007-7215-y

    Article  CAS  Google Scholar 

  46. Švedkauskaite-LeGore J, Mayer K, Millet S et al (2007) Investigation of the isotopic composition of lead and of trace elements concentrations in natural uranium materials as a signature in nuclear forensics. Radiochim Acta 95:601–605. https://doi.org/10.1524/ract.2007.95.10.601

    Article  CAS  Google Scholar 

  47. Keegan E, Richter S, Kelly I et al (2008) The provenance of Australian uranium ore concentrates by elemental and isotopic analysis. Appl Geochem 23:765–777. https://doi.org/10.1016/j.apgeochem.2007.12.004

    Article  ADS  CAS  Google Scholar 

  48. Nance WB, Taylor SR (1976) Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochim Cosmochim Acta 40:1539–1551. https://doi.org/10.1016/0016-7037(76)90093-4

    Article  ADS  CAS  Google Scholar 

  49. Wildeman TE, Condie KC (1973) Rare earths in Archean graywackes from Wyoming and from the Fig Tree Group, South Africa. Geochim Cosmochim Acta 37:439–453. https://doi.org/10.1016/0016-7037(73)90210-X

    Article  ADS  CAS  Google Scholar 

  50. Varga Z, Wallenius M, Mayer K (2010) Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern. Radiochim Acta 98:771–778. https://doi.org/10.1524/ract.2010.1777

    Article  CAS  Google Scholar 

  51. Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53:197–214. https://doi.org/10.1016/0016-7037(89)90286-X

    Article  ADS  CAS  Google Scholar 

  52. Cahn RW (1991) Binary alloy phase diagrams-second edition. Adv Mater 3:628–629. https://doi.org/10.1002/adma.19910031215

    Article  Google Scholar 

  53. Fedorov PP, Volkov SN (2016) Au–Cu phase diagram. Russ J Inorg Chem 61:772–775. https://doi.org/10.1134/S0036023616060061

    Article  CAS  Google Scholar 

  54. Okamoto H (2019) Supplemental Literature Review of Binary Phase Diagrams: Au-La, Ce-Pt, Co-Pt, Cr-S, Cu-Sb, Fe-Ni, Lu-Pd, Ni-S, Pd-Ti, Si-Te, Ta-V, and V-Zn. J Phase Equilib Diffus 40:743–756. https://doi.org/10.1007/s11669-019-00760-w

    Article  CAS  Google Scholar 

  55. Okamoto H, ASM International (1993) Phase diagrams of binary iron alloys. ASM International, Materials Park

    Google Scholar 

  56. Claisse F, Blanchette JS (2016) Physics and chemistry of borate fusion: theory and application, 3rd edn. Katanax, Quebec

    Google Scholar 

  57. Denton JS, Saull PRB, Bostick DA et al (2023) International interlaboratory compilation of trace element concentrations in the CUP-2 uranium ore concentrate standard. J Radioanal Nucl Chem 332(7):2817–2832

    Article  CAS  Google Scholar 

  58. Wu S, Karius V, Schmidt BC et al (2018) Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 42:575–591. https://doi.org/10.1111/ggr.12230

    Article  CAS  Google Scholar 

  59. Manard BT, Bostick DA, Metzger SC et al (2021) Rapid and automated separation of uranium ore concentrates for trace element analysis by inductively coupled plasma—optical emission spectroscopy/triple quadrupole mass spectrometry. Spectrochim Acta, Part B 179:106097. https://doi.org/10.1016/j.sab.2021.106097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in the context of a PhD thesis through financial support provided by Orano Mining and the CEA/DAM. The authors would like to express their gratitude to Mike Maury and Magali Celier (Orano Mining, CIME) for the training on the Katanax X-Fluxer X-600 apparatus and for their welcome during the preparation of the glass beads. Finally, authors express their gratitude to the two anonymous reviewers for their time and their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

MS: writing—original draft, data curation, formal analysis, software, investigation, methodology. A-CH: methodology, writing review and editing, supervision. VG: writing review, supervision. FP: methodology, writing review and editing, supervision. CP: methodology, writing review and editing, supervision.

Corresponding author

Correspondence to Michaël Susset.

Ethics declarations

Conflict of interest

The authors declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susset, M., Humbert, AC., Granger, V. et al. A simple and fast method for measurement of elemental impurities in powdered U-oxide materials by means of ns-UV laser ablation coupled to a sector-field ICP-MS. J Radioanal Nucl Chem 333, 877–888 (2024). https://doi.org/10.1007/s10967-023-09322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-09322-4

Keywords

Navigation