Skip to main content
Log in

Nondestructive characterization of diseased Chinese chive leaves using X-ray intensity ratios with microbeam synchrotron radiation X-ray fluorescence spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The Chinese chive (Allium tuberosum) is a core crop grown in Kochi Prefecture, Japan. However, withering symptoms occur during greenhouse growing, which have a negative impact on crop management Chinese chive leaves with physiological disorders (PD) or necrotic streak disease (ND) present with withering as typical blight symptoms. Excess or deficiency of elements may cause such withering in Chinese chive leaves with PD. Therefore, visualizing the elemental distribution in plant bodies may help clarify the cause of this withering. In this study, using synchrotron radiation X-ray fluorescence (SR-XRF) imaging, we examined the elemental distribution conditions in healthy Chinese chive leaves without withering, those that withered due to PD, and those that withered due to ND. Segmentation analysis of inductively coupled plasma-optical emission spectroscopy (ICP-OES) was performed on the SR-XRF imaged Chinese chive leaves and the data from the two analytical methods were compared. SR-XRF imaging provided more detailed data on elemental distribution compared with segmentation analysis using ICP-OES. Based on the SR-XRF imaging results, the X-ray intensity ratios for Ca/K, Fe/Mn, and Zn/Cu were calculated. These findings support that the Ca/K, Fe/Mn, and Zn/Cu X-ray intensity ratios can be used in the early detection of withered leaves and to predict the factors causing withering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Morinaga, M. Okabayashi, Effects of inorganic on leaf-tip wilting of Chinese chives 1. Nutrient deficiency symptoms and inorganic components of hydroponics solutions. Bull. Kochi Agric. Res. Cent. 22, 21–32 (2013)

    Google Scholar 

  2. S. Morinaga, M. Okabayashi, Effects of inorganic on leaf-tip wilting of Chinese chives 2. Nutrient deficiency symptoms and inorganic components of hydroponics solutions. Bull. Kochi Agric. Res. Cent. 22, 33–47 (2013)

    Google Scholar 

  3. Y. Yasuoka, S. Itokawa, Y. Hayami, E. Wada, I. Hashimoto, Factors inducing leaf tip burn on Chinese chive cultivated during the winter. Bull. Kochi Agric. Res. Cent. 29, 15–24 (2020)

    Google Scholar 

  4. K. Ooshima, Y. Nihei, Y. Saito, R. Sato, T. Matsumoto, Elucidation of the cause for Chinese chive leaf tip-burn. Bull. Tochigi Agric. Exp. Stn. 73, 11–20 (2015)

    Google Scholar 

  5. T. Fukuda, K. Nakayama, Y. Honda, Necrotic streak disease of Chinese chive caused by iris yellow spot virus (IYSV). Jpn. J. Phytopathol. 73, 311–313 (2007). https://doi.org/10.3186/jjphytopath.73.311

    Article  Google Scholar 

  6. A.E. Whitfield, D.E. Ullman, T.L. German, Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 43, 459–489 (2005). https://doi.org/10.1146/annurev.phyto.43.040204.140017

    Article  CAS  PubMed  Google Scholar 

  7. M. Morishima, T. Fukuda, T. Waki, Seasonal occurrence of Thrips tabaci (Lindeman) and the incidence of necrotic streak disease caused by iris yellow spot virus (IYSV) on Chinese chive Allium tuberosum. Jpn. J. Appl. Entomol. Zool. 56, 95–101 (2012). https://doi.org/10.1303/jjaez.2012.95

    Article  Google Scholar 

  8. G.G. De Arantes Carvalho, M.G. Bueno Guerra, A. Adame, C.S. Nomura, P.V. Oliveira, H.W. De Pereira Carvalho, D. Santos, L.C. Nunes, F.J. Krug, Recent advances in LIBS and XRF for the analysis of plants. J. Anal. At. Spectrom. 33(6), 911–1094 (2018). https://doi.org/10.1039/C7JA00293A

    Article  Google Scholar 

  9. H. Mekata, Diagnosing bovine leukemia virus infection. Jpn. J. Large Anim. Clin. 6, 221–226 (2016). https://doi.org/10.4190/jjlac.6.221

    Article  Google Scholar 

  10. W. Yamaoka, S. Takada, H. Takehisa, Y. Hayashi, A. Hokura, Y. Terada, T. Abe, I. Nakai, Study on accumulation mechanism of cadmium in rice (Oriza sativa L.) by micro-XRF imaging and X-ray absorption fine structure analysis utilizing synchrotron radiation. Jpn. Soc. Anal. Chem. 59(6), 463–475 (2010). https://doi.org/10.2116/bunsekikagaku.59.463

    Article  CAS  Google Scholar 

  11. Z. Chen, Y. Fujii, N. Yamaji, S. Masuda, Y. Takemoto, T. Kamiya, Y. Yusuyin, K. Iwasaki, S. Kato, M. Maeshima, J.F. Ma, D. Ueno, Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J. Exp. Bot. 64(14), 4375–4387 (2013). https://doi.org/10.1093/jxb/ert243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P.G. Smith, I. Koch, R.A. Gordon, D.F. Mandoli, B.D. Chapman, K.J. Reimer, X-ray absorption near-edge structure analysis of arsenic species for application to biological environmental samples. Environ. Sci. Technol. 39(1), 248–254 (2005). https://doi.org/10.1021/es049358b

    Article  CAS  PubMed  Google Scholar 

  13. E. Lombi, K.G. Scheckel, I.M. Kempson, In situ analysis of metal (Loid)s in plants: state of the art and artefacts. Environ. Exp. Bot. 72, 3–17 (2011). https://doi.org/10.1016/j.envexpbot.2010.04.005

    Article  CAS  Google Scholar 

  14. L. Lu, S. Tian, J. Zhang, X. Yang, J.M. Labavitch, S.M. Webb, M. Latimer, P.H. Brown, Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol. 198, 721–731 (2013). https://doi.org/10.1111/nph.12168

    Article  CAS  PubMed  Google Scholar 

  15. L. Krajcarová, K. Novotný, M. Kummerová, J. Dubová, V. Gloser, J. Kaiser, Mapping of the spatial distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced breakdown spectroscopy (LIBS). Int. J. Pure Appl. Anal. Chem. 173, 28–35 (2017). https://doi.org/10.1016/j.talanta.2017.05.055

    Article  CAS  Google Scholar 

  16. A.B. Mohammad, S.H.K. Mohammad, M.K. Mohammad, A.S. Khan, M.S. Al-Hajjaj, Quantification of trace elements in different Dokha and Shisha tobacco products using EDXRF. J. Anal. Toxicol. 43, e7–e22 (2019). https://doi.org/10.1093/jat/bky095

    Article  CAS  PubMed  Google Scholar 

  17. J. Trebolazabala, M. Maguregui, H. Morillas, A.D. Diego, J.M. Madariaga, Evaluation of metals distribution in Solanum lycopersicum plants located in a coastal environment using micro-energy dispersive X-ray fluorescence imaging. Microchem. J. 131, 137–144 (2017). https://doi.org/10.1016/j.microc.2016.12.009

    Article  CAS  Google Scholar 

  18. H. Komatsu, H. Takahara, W. Matsuda, Y. Nishiwaki, Nondestructive discrimination of red silk single fibers using total reflection X-ray fluorescence spectrometry and synchrotron radiation X-ray fluorescence spectrometry. J. Forensic Sci. 66(5), 1658–1668 (2021). https://doi.org/10.1111/1556-4029.14764

    Article  CAS  PubMed  Google Scholar 

  19. Y. Nishiwaki, S. Watanabe, O. Shimoda, Y. Saito, T. Nakanishi, Y. Terada, T. Ninomiya, I. Nakai, Trace elemental analysis of titanium dioxide pigments and automotive white paint fragments for forensic examination using high-energy synchrotron radiation X-ray fluorescence spectrometry. J. Forensic Sci. 54(3), 564–570 (2009). https://doi.org/10.1111/j.1556-4029.2009.01005.x

    Article  CAS  PubMed  Google Scholar 

  20. Y. Nishiwaki, T. Takahashi, E. Wada, Y. Nishimura, Nondestructive mineral imaging of Chinese chive leaves withered by physiological damage using microbeam synchrotron radiation X-ray fluorescence analysis. Anal. Sci. 37, 1459–1463 (2021). https://doi.org/10.2116/analsci.21N002

    Article  CAS  PubMed  Google Scholar 

  21. D.T. Clarkson, J.B. Hanson, The mineral nutrition of higher plants. Ann. Rev. Plant Physiol. 31, 239–298 (1980). https://doi.org/10.1146/annurev.pp.31.060180.001323

    Article  CAS  Google Scholar 

  22. R.A. Leigh, R.G.W. Jones, A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 97, 1–13 (1984). https://doi.org/10.1111/j.1469-8137.1984.tb04103.x

    Article  CAS  Google Scholar 

  23. P. Marschner, Marschner’s mineral nutrition of higher plants, 3rd edn. (Elsevier, Academic Press, San Diego, 2012), pp. 191−248 https://doi.org/10.1016/C2009-0-63043-9

    Book  Google Scholar 

  24. A.D. Peuke, Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis. J. Exp. Bot. 61(3), 635–655 (2009). https://doi.org/10.1093/jxb/erp352

    Article  CAS  PubMed  Google Scholar 

  25. L.E. Williams, J.K. Pittman, Dissecting pathways involved in manganese homeostasis and stress in higher plant cells. Cell. Biol. Met. Nutr. 17, 95–117 (2010). https://doi.org/10.1007/978-3-642-10613-2_5

    Article  CAS  Google Scholar 

  26. M. Reuveni, V. Agapov, R. Reuneni, A foliar spray of micronutrient solutions induces local and systemic protection against powdery mildew (Sphaerotheca fuliginia) in cucumber plants. Eur. J. Plant Pathol. 103, 581–588 (1997). https://doi.org/10.1023/A:1008671630687

    Article  CAS  Google Scholar 

  27. L. Banci, I. Bertini, K.S. McGreevya, A. Rosato, Molecular recognition in copper trafficking. Nat. Prod. Rep. 27, 659–710 (2010). https://doi.org/10.1039/b906678k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Microbeam synchrotron radiation X-ray fluorescence measurements were performed at the BL4A of Photon Factory (PF) with the approval of the High Energy Accelerator Research Organization (KEK) (Proposal number 2019G602 and 2022G116). This work was supported by Cabinet Office grant-in-aid, the Advanced Next-Generation Greenhouse Horticulture by IoP (Internet of Plants), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Nishiwaki.

Ethics declarations

Conflict of interest

No potential conflict of interests are reported by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T., Nishimura, Y., Wada, E. et al. Nondestructive characterization of diseased Chinese chive leaves using X-ray intensity ratios with microbeam synchrotron radiation X-ray fluorescence spectrometry. ANAL. SCI. 39, 493–501 (2023). https://doi.org/10.1007/s44211-022-00257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00257-6

Keywords

Navigation