Skip to main content
Log in

N-Benzoyl leucomethylene blue as a novel substrate for the assays of horseradish peroxidase by spectrophotometry and capillary electrophoresis–laser-induced fluorometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Horseradish peroxidase (HRP) is an enzyme that is frequently employed in various assays because HRP catalyzes the oxidation reactions of chromogenic and fluorogenic compounds to produce chromophores and fluorophores, respectively. The results of this study show that N-benzoyl leucomethylene blue (BLMB) is an excellent substrate for enzyme assay using HRP. In the presence of hydrogen peroxide (H2O2), HRP catalyzed an oxidation reaction of BLMB that produced methylene blue with a deep blue color. Thus, absorption spectrophotometry and capillary electrophoresis–laser-induced fluorometry (CE-LIF) could be used to easily determine the produced methylene blue. Under the optimum conditions, absorption spectrophotometry showed a linear calibration curve that ranged from 25 to 500 µg mL−1. The reaction conditions were also applicable to CE-LIF, showing a linear range of from 25 to 500 µg mL−1 with limits of detection and quantification at 2 and 6 µg mL−1, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Ukeda, Y. Fujita, M. Ohira, M. Sawamura, J. Agric. Food Chem. 44, 3858 (1996). https://doi.org/10.1021/jf960261l

    Article  CAS  Google Scholar 

  2. E. AI-Kaissi, A. Mostratos, J. Immunol. Methods 58, 127 (1983). https://doi.org/10.1016/0022-1759(83)90269-7

    Article  Google Scholar 

  3. V.C.W. Tsang, R.M. Greene, J.B. Pilcher, J. Immunoassay. 16, 395 (1995). https://doi.org/10.1080/15321819508013570

    Article  CAS  PubMed  Google Scholar 

  4. B. Porstmann, B.T. Porstmann, E. Nugel, J. Clin. Chem. Clin. Biochem. 19, 435 (1981). https://doi.org/10.1515/cclm.1981.19.7.435

    Article  CAS  PubMed  Google Scholar 

  5. S.M. Conyers, D.A. Kidwell, Anal. Biochem. 192, 207 (1991). https://doi.org/10.1016/0003-2697(91)90208-b

    Article  CAS  PubMed  Google Scholar 

  6. K. Zaitsu, Y. Ohkura, Anal. Biochem. 109, 109 (1980). https://doi.org/10.1016/0003-2697(80)90017-2

    Article  CAS  PubMed  Google Scholar 

  7. H. Arakawan, S. Nakabayashi, K. Ohno, M. Maeda, Pharm. Anal. 2, 156 (2012). https://doi.org/10.1016/j.jpha.2012.01.004

    Article  CAS  Google Scholar 

  8. P. Fanjul-Bolado, M.B. González-García, A. Costa-García, Electroanalysis 16, 988 (2004). https://doi.org/10.1002/elan.200302908

    Article  CAS  Google Scholar 

  9. Z. Zhang, J. Lai, K. Wu, X. Huang, S. Guo, L. Zhang, J. Liu, Talanta 180, 260 (2018). https://doi.org/10.1016/j.talanta.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  10. W.J. Gensler, J.R. Jones, R. Rein, J.J. Bruno, D.M. Bryan, J. Org. Chem. 31, 2324 (1966). https://doi.org/10.1021/jo01345a058

    Article  CAS  Google Scholar 

  11. M.I. Eiss, P. Giesecke, Anal. Chem. 31, 1558 (1959). https://doi.org/10.1021/ac60153a038

    Article  CAS  Google Scholar 

  12. P. Pérusse, D. Leech, Electroanalysis 15, 573 (2003). https://doi.org/10.1002/ELAN.200390071

    Article  Google Scholar 

  13. W. Guo, Y. Hu, H. Wei, Analyst 142, 2322 (2017). https://doi.org/10.1039/c7an00552k

    Article  CAS  PubMed  Google Scholar 

  14. G.S. Singhal, E. Rabinowitch, J. Phys. Chem. 71, 3347 (1967). https://doi.org/10.1021/j100869a039

    Article  CAS  Google Scholar 

  15. D. Wu, F.E. Regnier, Anal. Chem. 1993, 65 (2029). https://doi.org/10.1021/ac00063a017

    Article  Google Scholar 

  16. B.J. Harmon, D.H. Patterson, F.E. Regnier, Anal. Chem. 65, 2655 (1993). https://doi.org/10.1021/ac00067a018

    Article  CAS  PubMed  Google Scholar 

  17. K.J. Miller, I. Leesong, J. Bao, F.E. Regnier, F.E. Lytle, Anal. Chem. 65, 3267 (1993). https://doi.org/10.1021/ac00070a017

    Article  CAS  PubMed  Google Scholar 

  18. B.J. Harmon, I. Leesong, F.E. Regnier, J. Chromatogr. A 726, 193 (1996). https://doi.org/10.1016/0021-9673(95)00969-8

    Article  CAS  PubMed  Google Scholar 

  19. A. Harada, K. Sasaki, T. Kaneta, J. Chromatogr. A 1440, 145 (2016). https://doi.org/10.1016/j.chroma.2016.02.062

    Article  CAS  PubMed  Google Scholar 

  20. S. Kudo, A. Harada, H. Kubota, K. Sasaki, T. Kaneta, ACS Omega 2, 7329 (2017). https://doi.org/10.1021/acsomega.7b00998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Rozenski, A.A. Asfaw, A. Van Schepdael, Electrophoresis (2021). https://doi.org/10.1002/elps.202100161

    Article  PubMed  Google Scholar 

  22. J. Mbuna, T. Kaneta, T. Imasaka, Electrophoresis 31, 1396 (2010). https://doi.org/10.1002/elps.200900659

    Article  CAS  PubMed  Google Scholar 

  23. T.T. Ngo, H.M. Lenhoff, Anal. Biochem. 105, 389 (1980). https://doi.org/10.1016/0003-2697(80)90475-3

    Article  CAS  PubMed  Google Scholar 

  24. J. Bovaird, T.T. Ngo, H.M. Lenhoff, Clin. Chem. 28, 2423 (1982). https://doi.org/10.1093/clinchem/28.12.2423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP20H02766.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kaneta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Kaneta, T. N-Benzoyl leucomethylene blue as a novel substrate for the assays of horseradish peroxidase by spectrophotometry and capillary electrophoresis–laser-induced fluorometry. ANAL. SCI. 38, 651–655 (2022). https://doi.org/10.1007/s44211-022-00078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00078-7

Keywords

Navigation