Skip to main content
Log in

3D-Printed Electrochemical Platform for Detection of Diabetes Biomarkers: Drop-Based and Time-Based Readout for Clinical Diagnosis

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

Multiplex detection of biomarkers in clinical matrices on a single sensor platform is the need for a detailed disease diagnosis and patient prognosis. Herein, we demonstrate immunoassay/enzyme detection assay formats on a 3D-printed device for measuring insulin, C peptide, and glucose in two-fold diluted human serum electrochemically. The sensor platform comprised of a graphene–gold (Gr–Au) framework to immobilize insulin and C peptide specific antibodies and glucose oxidase to detect clinically relevant levels of diabetes biomarkers with good sensitivity, specificity, and reproducibility. The fabrication of the 3D-printed sensor platform is characterized by field emission scanning electron microscopy (FESEM) and electron impedance spectroscopy (EIS). The current signals for detection of free serum insulin, C peptide were monitored by oxidation of ferro/ferricyanide redox probe, while glucose was detected directly using square wave voltammetry (drop-based) and amperometry (real-time). The designed electrochemical platform offered a limit of detection (LOD) 4 pM insulin, 0.02 nM C peptide, and 0.05 mM glucose. The Gr–Au framework was ~ 2.5× more sensitive in detecting diabetes biomarkers in human serum when compared to pristine Gr framework. Additionally, the sensor does not show any cross-reactivity to non-specific biomarkers in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organization (WHO). WHO Diabetes Programme. http://www.who.int/diabetes/en/. Accessed 1 Apr 2022

  2. G. Freckmann, S. Hagenlocher, A. Baumstark, N. Jendrike, R.C. Gillen, K. Rössner, C. Haug, Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J. Diabetes Sci. Technol. 1, 695–703 (2007)

    Article  Google Scholar 

  3. D.M. Muoio, C.B. Newgard, Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 193–205 (2008)

    Article  CAS  Google Scholar 

  4. C. Weyer, R.L. Hanson, P.A. Tataranni, C. Bogardus, R.E. Pratley, A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes 49, 2094–2101 (2000)

    Article  CAS  Google Scholar 

  5. F.C. Goetz, L.R. French, W. Thomas, R.L. Gingerich, J.P. Clements, Are specific serum insulin levels low in impaired glucose tolerance and type II diabetes?: measurement with a radioimmunoassay blind to proinsulin, in the population of Wadena, Minnesota. Metabolism 44, 1371–1376 (1995)

    Article  CAS  Google Scholar 

  6. K.C. Ronald, G.C. Weir, Joslin’s Diabetes Mellitus, fourteenth. (Lippincott Williams & Wilkins, Philadelphia, 2005)

    Google Scholar 

  7. D.F. Steiner, P.E. Oyer, The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl. Acad. Sci. USA 57, 473–480 (1967)

    Article  CAS  Google Scholar 

  8. M. Liu, J. Wright, H. Guo, Y. Xiong, P. Arvan, Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. Vitam. Horm. 95, 35–62 (2014)

    Article  CAS  Google Scholar 

  9. G.L.C. Yosten, C. Maric-Bilkan, P. Luppi, J. Wahren, Physiological effects and therapeutic potential of proinsulin C-peptide. Am. J. Physiol. Endocrinol. Metab. 307, E955–E968 (2014)

    Article  CAS  Google Scholar 

  10. K.W. Cheng, A radioreceptor assay for follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 41, 581–589 (1975)

    Article  CAS  Google Scholar 

  11. L. Andersen, B. Dinesen, P.N. Jorgensen, F. Poulsen, M.E. Roder, Enzyme immunoassay for intact human insulin in serum or plasma. Clin. Chem. 39, 578–582 (1993)

    Article  CAS  Google Scholar 

  12. S.E. Manley, I.M. Stratton, P.M. Clark, S.D. Luzio, Comparison of 11 human insulin assays: implications for clinical investigation and research. Clin. Chem. 53, 922–932 (2007)

    Article  CAS  Google Scholar 

  13. P.M. Clark, Assays for insulin, proinsulin(s) and C-peptide. Ann. Clin. Biochem. 36, 541–564 (1999)

    Article  CAS  Google Scholar 

  14. J.P. Ashby, B.M. Frier, Circulating C peptide: measurement and clinical application. Ann. Clin. Biochem. 18, 125–130 (1981)

    Article  CAS  Google Scholar 

  15. P. Koskinen, Non-transferability of C-peptide measurements with various commercial radioimmunoassay reagents. Clin. Chem. 34, 1575–1578 (1988)

    Article  CAS  Google Scholar 

  16. J.P. Palmer, G.A. Fleming, C.J. Greenbaum, K.C. Herold, L.D. Jansa, H. Kolb, J.H. Lachin, K.S. Polonsk, P. Pozzilli, J.S. Skyler, M.W. Steffes, C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21–22 October 2001. Diabetes 53, 250–264 (2004)

    Article  CAS  Google Scholar 

  17. V. Singh, S. Krishnan, Electrochemical mass sensor for diagnosing diabetes in human serum. Analyst 139, 724–728 (2014)

    Article  CAS  Google Scholar 

  18. V. Singh, S. Krishnan, Voltammetric immunosensor assembled on carbon-pyrenyl nanostructures for clinical diagnosis of type of diabetes. Anal. Chem. 87, 2648–2654 (2015)

    Article  CAS  Google Scholar 

  19. V. Singh, Quantum dot decorated multi-walled carbon nanotube modified electrochemical sensor array for single drop insulin detection. Mater. Lett. 254, 415–418 (2019)

    Article  CAS  Google Scholar 

  20. W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010)

    Article  CAS  Google Scholar 

  21. Y. Si, E.T. Samulski, Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 20, 6792–6797 (2008)

    Article  CAS  Google Scholar 

  22. H.-W. Tien, Y.-L. Huang, S.-Y. Yang, J.-Y. Wang, C.-C.M. Ma, The production of graphene nanosheets decorated with silver nanoparticles for use in transparent conductive films. Carbon 49, 1550–1560 (2011)

    Article  CAS  Google Scholar 

  23. B. Gross, S.Y. Lockwood, D.M. Spence, Recent advances in analytical chemistry by 3D printing. Anal. Chem. 89, 57–70 (2017)

    Article  CAS  Google Scholar 

  24. H.N. Chia, B.M. Wu, Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9, 4 (2015)

    Article  Google Scholar 

  25. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing. Mater. Today. 16, 496–504 (2013)

    Article  CAS  Google Scholar 

  26. Why 3D printing could be a manufacturing and logistics game changer. https://www.manufacturing.net/blog/2013/10/why-3d-printing-could-be-manufacturing-and-logistics-game-changer. Accessed 30 Apr 2018

  27. J.V. Crivello, E. Reichmanis, Photopolymer materials and processes for advanced technologies. Chem. Mater. 26, 533–548 (2014)

    Article  CAS  Google Scholar 

  28. N.P. Macdonald, J.M. Cabot, P. Smejkal, R.M. Guijt, B. Paull, M.C. Breadmore, Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 89, 3858–3866 (2017)

    Article  CAS  Google Scholar 

  29. C. Tang, A. Vaze, J.F. Rusling, Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins. Lab Chip 17, 484–489 (2017)

    Article  CAS  Google Scholar 

  30. K. Kadimisetty, S. Malla, J.F. Rusling, Automated 3D-printed arrays to evaluate genotoxic chemistry: e-cigarettes and water samples. ACS Sens. 2, 670–678 (2017)

    Article  CAS  Google Scholar 

  31. B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, X. Chen, Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6, 6546–6561 (2012)

    Article  CAS  Google Scholar 

  32. M.-I. Mohammed, M.P.Y. Desmulliez, Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip 11, 569–595 (2011)

    Article  CAS  Google Scholar 

  33. B. Li, H. Tan, D. Jenkins, V.S. Raghavan, B.G. Rosa, F. Güder, G. Pan, E. Yeatman, D.J. Sharp, Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor. Carbon 168, 144–162 (2020)

    Article  CAS  Google Scholar 

  34. V. Singh, 3D-printed device for synthesis of magnetic and metallic nanoparticles. J. Flow Chem. 11, 135–142 (2021)

    Article  CAS  Google Scholar 

  35. M. Zhang, C. Mullens, W. Gorski, Insulin oxidation and determination at carbon electrodes. Anal. Chem. 77, 6396–6401 (2005)

    Article  CAS  Google Scholar 

  36. K.-J. Huang, D.-F. Luo, W.-Z. Xie, Y.-S. Yu, Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode. Colloids Surf. B 61, 176–181 (2008)

    Article  CAS  Google Scholar 

  37. C. Li, Voltammetric determination of tyrosine based on an l-serine polymer film electrode. Colloids Surf. B 50, 147–151 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Department of Science and Technology (DST), Government of India for the financial support under the Women Scientist Scheme (Project Number: SR/WOS-A/ET-46/2018) to carry out this work. The author gratefully acknowledges Dr. Venkataiah Gorige for allowing the use of electrochemical workstation in his laboratory.

Author information

Authors and Affiliations

Authors

Contributions

VS: Conceptualization, Methodology, Validation, Formal analysis, Investigation, and Writing—review & editing.

Corresponding author

Correspondence to Vini Singh.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 616 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V. 3D-Printed Electrochemical Platform for Detection of Diabetes Biomarkers: Drop-Based and Time-Based Readout for Clinical Diagnosis. Biomedical Materials & Devices 1, 861–870 (2023). https://doi.org/10.1007/s44174-022-00054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44174-022-00054-9

Keywords

Navigation