Skip to main content
Log in

Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rapid and accurate detection of glucose is of great significance for diabetic management. Highly sensitive glucose sensors promise to achieve noninvasive detection technology, enabling more convenient and efficient means for large-scale screening and long-term dynamic monitoring of diabetes patients. In this work, we demonstrate a sensitive glucose electrochemical biosensor through the synergetic labelling strategy utilizing PbS colloidal quantum dots (CQDs) and Au nanospheres (AuNSs). The PbS CQDs/AuNSs/glucose oxidase (GOx) mixture could be stably immobilized on the carbon electrode surface via the one-step dip-coating method. The electrochemical biosensor employing PbS CQDs/AuNSs/GOx-modified electrode integrates the functions of specific molecule recognition, signal transduction as well as signal amplification. The sensor is capable of transducing the glucose enzyme-catalyzed reaction into significant current signals, exhibiting a good linear response in the glucose concentration range of 0.1 µM—10 mM with the limit of detection being 1.432 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krentz, A. J.; Hompesch, M. Glucose: Archetypal biomarker in diabetes diagnosis, clinical management and research. Biomark. Med. 2016, 10, 1153–1166.

    CAS  Google Scholar 

  2. Harding, J. L.; Pavkov, M. E.; Magliano, D. J.; Shaw, J. E.; Gregg, E. W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16.

    Google Scholar 

  3. Tariq, S.; Mirza, M. R.; Choudhary, M. I.; Sultan, R.; Zafar, M. Prediction of Type 2 diabetes at pre-diabetes stage by mass spectrometry: a preliminary study. Int. J. Pept. Res. Ther. 2022, 28, 111.

    CAS  Google Scholar 

  4. Yoo, E. H.; Lee, S. Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576.

    Google Scholar 

  5. Sun, K.; Yang, Y. K.; Zhou, H.; Yin, S. Y.; Qin, W. P.; Yu, J. B.; Chiu, D. T.; Yuan, Z.; Zhang, X. J.; Wu, C. F. Ultrabright polymer-dot transducer enabled wireless glucose monitoring via a smartphone. ACS Nano 2018, 12, 5176–5184.

    CAS  Google Scholar 

  6. Sun, X. C. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal. Chim. Acta 2022, 1206, 339226.

    CAS  Google Scholar 

  7. Zhang, R. C.; Liu, S. Y.; Jin, H. R.; Luo, Y. Q.; Zheng, Z. S.; Gao, F.; Zheng, Y. J. Noninvasive electromagnetic wave sensing of glucose. Sensors 2019, 19, 1151.

    CAS  Google Scholar 

  8. Sabu, C.; Henna, T. K.; Raphey, V. R.; Nivitha, K. P.; Pramod, K. Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 2019, 141, 111201.

    CAS  Google Scholar 

  9. Zhou, Y.; Hu, Q.; Yu, F.; Ran, G. Y.; Wang, H. Y.; Shepherd, N. D.; D’Alessandro, D. M.; Kurmoo, M.; Zuo, J. L. A metal-organic framework based on a nickel bis(dithiolene) connector: Synthesis, crystal structure, and application as an electrochemical glucose sensor. J. Am. Chem. Soc. 2020, 142, 20313–20317.

    CAS  Google Scholar 

  10. Hassan, M. H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 2021, 21, 4672.

    CAS  Google Scholar 

  11. Wei, M.; Qiao, Y. X.; Zhao, H. T.; Liang, J.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Lu, W. B.; Sun, X. P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569.

    CAS  Google Scholar 

  12. Piao, Y. X.; Han, D. J.; Azad, M. R.; Park, M.; Seo, T. S. Enzyme incorporated microfluidic device for in-sttu glucose detection in water-in-air microdroplets. Biosens. Bioelectron. 2015, 65, 220–225.

    CAS  Google Scholar 

  13. Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866.

    Google Scholar 

  14. Du, Y. Q.; Zhang, W. J.; Wang, M. L. Sensing of salivary glucose using nano-structured biosensors. Biosensors 2016, 6, 10.

    Google Scholar 

  15. Deng, H. M.; Teo, A. K. L.; Gao, Z. Q. An interference-free glucose biosensor based on a novel low potential redox polymer mediator. Sens. Actuators B Chem. 2014, 191, 522–528.

    CAS  Google Scholar 

  16. Krishna, R.; Campiña, J. M.; Fernandes, P. M. V.; Ventura, J.; Titus, E.; Silva, A. F. Reduced graphene oxide-nickel nanoparticles/biopolymer composite films for the sub-millimolar detection of glucose. Analyst 2016, 141, 4151–4161.

    CAS  Google Scholar 

  17. Ciaurriz, P.; Bravo, E.; Hamad-Schifferli, K. Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates. J. Colloid Interface Sci. 2014, 414, 73–81.

    CAS  Google Scholar 

  18. Kowalewska, B.; Jakubow, K. The impact of immobilization process on the electrochemical performance, bioactivity and conformation of glucose oxidase enzyme. Sens. Actuators B Chem. 2017, 238, 852–861.

    CAS  Google Scholar 

  19. Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010-2020). Chem. Soc. Rev. 2020, 49, 7671–7709.

    CAS  Google Scholar 

  20. Witkowska Nery, E.; Kundys, M.; Jeleń, P. S.; Jönsson-Niedziółka, M. Electrochemical glucose sensing: Is there still room for improvement? Anal. Chem. 2016, 33, 11271–11282.

    Google Scholar 

  21. Kwak, K.; Kumar, S. S.; Pyo, K.; Lee, D. Ionic liquid of a gold nanocluster: A versatile matrix for electrochemical biosensors. ACS Nano 2014, 3, 671–679.

    Google Scholar 

  22. Hui, J. N.; Cui, J. W.; Xu, G. Q.; Adeloju, S. B.; Wu, Y. C. Direct electrochemistry of glucose oxidase based on Nafion-graphene-GOD modified gold electrode and application to glucose detection. Mater. Lett. 2013, 108, 88–91.

    CAS  Google Scholar 

  23. Raymundo-Pereira, P. A.; Shimizu, F. M.; Coelho, D.; Piazzeta, M. H. O.; Gobbi, A. L.; Machado, S. A. S.; Oliveira, O. N. Jr. A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: Synergy in hybrid Pt/Au surfaces. Biosens. Bioelectron. 2016, 86, 369–376.

    CAS  Google Scholar 

  24. Vargas, E.; Teymourian, H.; Tehrani, F.; Eksin, E.; Sánchez-Tirado, E.; Warren, P.; Erdem, A.; Dassau, E.; Wang, J. Enzymatic/immunoassay dual-biomarker sensing chip: Towards decentralized insulin/glucose detection. Angew. Chem., Int. Ed. 2019, 58, 6376–6379.

    CAS  Google Scholar 

  25. Cao, Q. P.; Liang, B.; Tu, T. T.; Wei, J. W.; Fang, L.; Ye, X. S. Three-dimensional paper-based microfluidic electrochemical integrated devices (3D-PMED) for wearable electrochemical glucose detection. RSC Adv. 2019, 9, 5674–5681.

    CAS  Google Scholar 

  26. Kim, K. B.; Lee, W. C.; Cho, C. H.; Park, D. S.; Cho, S. J.; Shim, Y. B. Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sens. Actuators B Chem. 2019, 281, 14–21.

    CAS  Google Scholar 

  27. Liu, H.; Li, M.; Shao, G.; Zhang, W. K.; Wang, W. W.; Song, H. B.; Cao, H. F.; Ma, W. L.; Tang, J. Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange. Sens. Actuators B Chem. 2015, 212, 434–439.

    CAS  Google Scholar 

  28. Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q. Y.; Zhou, D. X.; Xia, Z.; Sargent, E. H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718–2724.

    CAS  Google Scholar 

  29. Zhao, Y. N.; Chen, J. J.; Hu, Z. X.; Chen, Y.; Tao, Y. B.; Wang, L.; Li, L.; Wang, P.; Li, H. Y.; Zhang, J. B. et al. All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens. Bioelectron. 2022, 202, 113974.

    CAS  Google Scholar 

  30. Zhao, Y. N.; Tao, Y. B.; Huang, Q.; Huang, J.; Kuang, J. Y.; Gu, R. Q.; Zeng, P.; Li, H. Y.; Liang, H. G.; Liu, H. Electrochemical biosensor employing Bi2S3 nanocrystals-modified electrode for bladder cancer biomarker detection. Chemosensors 2022, 10, 48.

    CAS  Google Scholar 

  31. Gu, Z. G.; Yang, S. P.; Li, Z. J.; Sun, X. L.; Wang, G. L.; Fang, Y. J.; Liu, J. K. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Electrochim. Acta 2011, 56, 9162–9167.

    CAS  Google Scholar 

  32. Razmi, H.; Mohammad-Rezaei, R. Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosens. Bioelectron. 2013, 41, 498–504.

    CAS  Google Scholar 

  33. Liu, Q.; Lu, X. B.; Li, J.; Yao, X.; Li, J. H. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron. 2007, 22, 3203–3209.

    CAS  Google Scholar 

  34. Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2021, 4, 141–153.

    Google Scholar 

  35. Qiu, C. C.; Wang, X.; Liu, X. Y.; Hou, S. F.; Ma, H. Y. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor. Electrochim. Acta 2012, 67, 140–146.

    CAS  Google Scholar 

  36. Singh, J.; Khanra, P.; Kuila, T.; Srivastava, M.; Das, A. K.; Kim, N. H.; Jung, B. J.; Kim, D. Y.; Lee, S. H.; Lee, D. W. et al. Preparation of sulfonated poly(ether-ether-ketone) functionalized ternary graphene/AuNPs/chitosan nanocomposite for efficient glucose biosensor. Process Biochem. 2013, 48, 1724–1735.

    CAS  Google Scholar 

  37. Zhang, W. J.; Du, Y. Q.; Wang, M. L. On-chip highly sensitive saliva glucose sensing using multilayer films composed of singlewalled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens. Biosensing Res. 2015, 4, 96–102.

    Google Scholar 

  38. Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

    CAS  Google Scholar 

  39. Holland, J. T.; Lau, C.; Brozik, S.; Atanassov, P.; Banta, S. Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. J. Am. Chem. Soc. 2011, 133, 19262–19265.

    CAS  Google Scholar 

  40. de Arquer, F. P. G.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

    Google Scholar 

  41. Liu, M. X.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E. H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558.

    Google Scholar 

  42. Choi, J. H.; Wang, H.; Oh, S. J.; Paik, T.; Sung, P.; Sung, J.; Ye, X. C.; Zhao, T. S.; Diroll, B. T.; Murray, C. B. et al. Exploiting the colloidal nanocrystal library to construct electronic devices. Science 2016, 352, 205–208.

    CAS  Google Scholar 

  43. Bandekar, J. Amide modes and protein conformation. Biochim. Biophys. Acta 1992, 1120, 123–143.

    CAS  Google Scholar 

  44. Wang, Q. S.; Ye, F. Y.; Fang, T. T.; Niu, W. H.; Liu, P.; Min, X. M.; Li, X. Bovine serum albumin-directed synthesis of biocompatible CdSe quantum dots and bacteria labeling. J. Colloid Interface Sci. 2011, 355, 9–14.

    CAS  Google Scholar 

  45. Mehdizadeh, B.; Maleknia, L.; Amirabadi, A.; Shabani, M. Glucose sensing by a glassy carbon electrode modified with glucose oxidase/chitosan/graphene oxide nanofibers. Diam. Relat. Mater. 2020, 109, 108073.

    CAS  Google Scholar 

  46. Sriwichai, S.; Phanichphant, S. Fabrication and characterization of electrospun poly(3-aminobenzylamine)/functionalized multi-walled carbon nanotubes composite film for electrochemical glucose biosensor. Express Polym. Lett. 2022, 16, 439–450.

    CAS  Google Scholar 

  47. Qi, M.; Zhang, Y.; Cao, C. M.; Lu, Y.; Liu, G. Z. Increased sensitivity of extracellular glucose monitoring based on AuNP decorated GO nanocomposites. RSC Adv. 2016, 6, 39180–39187.

    CAS  Google Scholar 

  48. Rakhi, R. B.; Nayak, P.; Xia, C.; Alshareef, H. N. Novel Amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 2016, 6, 36422.

    CAS  Google Scholar 

  49. Maity, D.; Minitha, C. R.; Rajendra Kumar, R. T. Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive Amperometric glucose detection. Mater. Sci. Eng. C 2019, 105, 110075.

    CAS  Google Scholar 

  50. Zhang, T.; Ran, J. H.; Ma, C.; Yang, B. A universal approach to enhance glucose biosensor performance by building blocks of Au nanoparticles. Adv. Mater. Interfaces 2020, 7, 2000227.

    CAS  Google Scholar 

  51. Yang, P. Q.; Peng, J. M.; Chu, Z. Y.; Jiang, D. F.; Jin, W. Q. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips. Biosens. Bioelectron. 2017, 92, 709–717.

    CAS  Google Scholar 

  52. Hou, C.; Zhao, D. Y.; Wang, Y.; Zhang, S. F.; Li, S. Y. Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J. Electroanal. Chem. 2018, 822, 50–56.

    CAS  Google Scholar 

  53. Park, S. M.; Yoo, J. S. Electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem. 2003, 75, 455A–461A.

    CAS  Google Scholar 

  54. Lust, E.; Jänes, A.; Arulepp, M. Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors. J. Electroanal. Chem. 2004, 562, 33–42.

    CAS  Google Scholar 

  55. Bradbury, C. R.; Zhao, J. J.; Fermín, D. J. Distance-independent charge-transfer resistance at gold electrodes modified by thiol monolayers and metal nanoparticles. J. Phys. Chem. C 2008, 112, 10153–10160.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61922032 and 62205118). We thank Program for HUST Academic Frontier Youth Team (No. 2018QYTD06) and Innovation Fund of WNLO for equipment support. We thank Analytical and Testing Center of HUST for the characterization support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Liu.

Electronic supplementary material

12274_2022_5138_MOESM1_ESM.pdf

Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Huang, J., Huang, Q. et al. Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection. Nano Res. 16, 4085–4092 (2023). https://doi.org/10.1007/s12274-022-5138-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5138-0

Keywords

Navigation