Skip to main content
Log in

Higher-Order Maxwell–Stefan Model of Diffusion

  • Original Research Article
  • Published:
La Matematica Aims and scope Submit manuscript

Abstract

The paper studies a higher-order diffusion model of Maxwell–Stefan kind. The model is based upon higher-order moment equations from the kinetic theory of mixtures, which include the viscous dissipation/the pressure tensor. The governing equations are scaled using the so-called diffusive scaling, in which the Mach and Knudsen numbers are assumed to be of the same small order of magnitude. In the asymptotic limit when the small parameter vanishes, the model exhibits a coupling between the species’ partial pressure gradients, which generalizes the classical Maxwell–Stefan model. The scaled equations also lead to a higher-order model of diffusion in which inertia terms are not neglected. In that case, the model is extended by the momentum flux balance laws which determine the evolution of the pressure tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giovangigli, V.: Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston Inc, Boston (1999). https://doi.org/10.1007/978-1-4612-1580-6

    Book  Google Scholar 

  2. Krishna, R., Wesselingh, J.A.: The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52(6), 861–911 (1997). https://doi.org/10.1016/S0009-2509(96)00458-7

    Article  Google Scholar 

  3. Bothe, D.: On the Maxwell–Stefan approach to multicomponent diffusion. In: Parabolic Problems. Progress in Nonlinear Differential Equations Applications, vol. 80, pp. 81–93. Birkhäuser/Springer, Basel AG, Basel (2011). https://doi.org/10.1007/978-3-0348-0075-4_5

  4. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Series in Physics. North-Holland Publishing Co., Amsterdam, Interscience Publishers Inc., New York (1962)

  5. Hutridurga, H., Salvarani, F.: Existence and uniqueness analysis of a non-isothermal cross-diffusion system of Maxwell–Stefan type. Appl. Math. Lett. 75, 108–113 (2018). https://doi.org/10.1016/j.aml.2017.06.007

    Article  MathSciNet  Google Scholar 

  6. Daus, E.S., Jüngel, A., Tang, B.Q.: Exponential time decay of solutions to reaction–cross-diffusion systems of Maxwell–Stefan type. Arch. Ration. Mech. Anal. 235(2), 1059–1104 (2020). https://doi.org/10.1007/s00205-019-01439-9

    Article  MathSciNet  Google Scholar 

  7. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Thermal Conduction and Diffusion in Gases. An Account of the Kinetic Theory of Viscosity, Cambridge University Press, London (1970)

    Google Scholar 

  8. Golse, F.: The Boltzmann equation and its hydrodynamic limits. In: Evolutionary Equations. Handbook of Differential Equations, vol. II, pp. 159–301. Elsevier/North-Holland, Amsterdam (2005)

  9. Briant, M., Grec, B.: Rigorous derivation of the Fick cross-diffusion system from the multi-species Boltzmann equation in the diffusive scaling. Asymptot. Anal. (2023). https://doi.org/10.3233/ASY-231847. (preprint)

    Article  MathSciNet  Google Scholar 

  10. Boudin, L., Grec, B., Salvarani, F.: The Maxwell–Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136, 79–90 (2015). https://doi.org/10.1007/s10440-014-9886-z

    Article  MathSciNet  Google Scholar 

  11. Boudin, L., Grec, B., Pavan, V.: The Maxwell–Stefan diffusion limit for a kinetic model of mixtures with general cross sections. Nonlinear Anal. 159, 40–61 (2017). https://doi.org/10.1016/j.na.2017.01.010

    Article  MathSciNet  Google Scholar 

  12. Kerkhof, P.J., Geboers, M.A.: Analysis and extension of the theory of multicomponent fluid diffusion. Chem. Eng. Sci. 60(12), 3129–3167 (2005). https://doi.org/10.1016/j.ces.2004.12.042

    Article  Google Scholar 

  13. Chen, X., Jüngel, A.: Analysis of an incompressible Navier–Stokes–Maxwell–Stefan system. Commun. Math. Phys. 340(2), 471–497 (2015). https://doi.org/10.1007/s00220-015-2472-z

    Article  MathSciNet  Google Scholar 

  14. Anwasia, B., Gonçalves, P., Soares, A.J.: On the formal derivation of the reactive Maxwell–Stefan equations from the kinetic theory. Europhys. Lett. 129(4), 40005 (2020). https://doi.org/10.1209/0295-5075/129/40005

    Article  Google Scholar 

  15. Anwasia, B., Bisi, M., Salvarani, F., Soares, A.J.: On the Maxwell–Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinet. Relat. Models 13(1), 63–95 (2020). https://doi.org/10.3934/krm.2020003

    Article  MathSciNet  Google Scholar 

  16. Anwasia, B., Simić, S.: Maximum entropy principle approach to a non-isothermal Maxwell–Stefan diffusion model. Appl. Math. Lett. 129, 107949–9 (2022). https://doi.org/10.1016/j.aml.2022.107949

    Article  MathSciNet  Google Scholar 

  17. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949). https://doi.org/10.1002/cpa.3160020403

    Article  MathSciNet  Google Scholar 

  18. Kogan, M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969)

    Book  Google Scholar 

  19. Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1993). https://doi.org/10.1007/978-1-4684-0447-0

    Book  Google Scholar 

  20. Dreyer, W.: Maximisation of the entropy in nonequilibrium. J. Phys. A 20(18), 6505–6517 (1987). https://doi.org/10.1088/0305-4470/20/18/047

    Article  MathSciNet  Google Scholar 

  21. Kremer, G.M.: An Introduction to the Boltzmann Equation and Transport Processes in Gases. Interaction of Mechanics and Mathematics. Springer, Dordrecht (2010). https://doi.org/10.1007/978-3-642-11696-4

    Book  Google Scholar 

  22. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996). https://doi.org/10.1007/BF02179552

    Article  MathSciNet  Google Scholar 

  23. Boudin, L., Grec, B., Salvarani, F.: The Maxwell–Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136, 79–90 (2015). https://doi.org/10.1007/s10440-014-9886-z

    Article  MathSciNet  Google Scholar 

  24. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984). https://doi.org/10.1007/978-1-4612-5206-1

    Book  Google Scholar 

  25. Ruggeri, T., Simić, S.: On the hyperbolic system of a mixture of Eulerian fluids: a comparison between single- and multi-temperature models. Math. Methods Appl. Sci. 30(7), 827–849 (2007). https://doi.org/10.1002/mma.813

    Article  MathSciNet  Google Scholar 

  26. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-2210-1

    Book  Google Scholar 

  27. Bothe, D., Dreyer, W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226(6), 1757–1805 (2015). https://doi.org/10.1007/s00707-014-1275-1

    Article  MathSciNet  Google Scholar 

  28. Ruggeri, T., Sugiyama, M.: Classical and Relativistic Rational Extended Thermodynamics of Gases. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59144-1

    Book  Google Scholar 

  29. Hutridurga, H., Salvarani, F.: Maxwell–Stefan diffusion asymptotics for gas mixtures in non-isothermal setting. Nonlinear Anal. 159, 285–297 (2017). https://doi.org/10.1016/j.na.2017.03.019

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was prepared during the stay of Srboljub Simić at Université Paris Cité thanks to “Guest researchers’ Faculty Programme 2022”. The research was also financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grant No. 451-03-47/2023-01/200125) (S.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bérénice Grec.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grec, B., Simić, S. Higher-Order Maxwell–Stefan Model of Diffusion. La Matematica 2, 962–991 (2023). https://doi.org/10.1007/s44007-023-00071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44007-023-00071-0

Keywords

Navigation