Skip to main content

Quantized Compressed Sensing: A Survey

  • Chapter
  • First Online:
Compressed Sensing and Its Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

The field of quantized compressed sensing investigates how to jointly design a measurement matrix, quantizer, and reconstruction algorithm in order to accurately reconstruct low-complexity signals from a minimal number of measurements that are quantized to a finite number of bits. In this short survey, we give an overview of the state-of-the-art rigorous reconstruction results that have been obtained for three popular quantization models: one-bit quantization, uniform scalar quantization, and noise-shaping methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Ai, A. Lapanowski, Y. Plan, R. Vershynin, One-bit compressed sensing with non-Gaussian measurements. Linear Algebr. Appl. 441, 222–239 (2014)

    Article  MathSciNet  Google Scholar 

  2. U. Ayaz, S. Dirksen, H. Rauhut, Uniform recovery of fusion frame structured sparse signals. Appl. Comput. Harmon. Anal. 41(2), 341–361 (2016)

    Article  MathSciNet  Google Scholar 

  3. R. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters, One-bit compressive sensing of dictionary-sparse signals. Inf. Inference: A J. IMA 7(1), 83–104 (2017)

    Article  MathSciNet  Google Scholar 

  4. R.G. Baraniuk, S. Foucart, D. Needell, Y. Plan, M. Wootters, Exponential decay of reconstruction error from binary measurements of sparse signals. IEEE Trans. Inf. Theory 63(6), 3368–3385 (2017)

    Article  MathSciNet  Google Scholar 

  5. P.T. Boufounos, R.G. Baraniuk, 1-bit compressive sensing, in 2008 42nd Annual Conference on Information Sciences and Systems (IEEE 2008), pp. 16–21

    Google Scholar 

  6. P. T. Boufounos, L. Jacques, F. Krahmer, R. Saab, Quantization and compressive sensing, in Compressed Sensing and its Applications (Springer, 2015), pp. 193–237

    Google Scholar 

  7. J. Bourgain, An improved estimate in the restricted isometry problem, in Geometric Aspects of Functional Analysis, ed. B. Klartag, E. Milman, volume 2116 of Lecture Notes in Mathematics (Springer International Publishing, 2014), pp. 65–70

    Google Scholar 

  8. E.J. Candès, J., T. Tao, J.K. Romberg, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Google Scholar 

  9. E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  10. E. Chou, Beta-duals of frames and applications to problems in quantization. PhD thesis, New York University (2013)

    Google Scholar 

  11. E. Chou, C.S. Güntürk, Distributed noise-shaping quantization: I. Beta duals of finite frames and near-optimal quantization of random measurements. Constr. Approx. 44(1), 1–22 (2016)

    Google Scholar 

  12. E. Chou, C. S. Güntürk, Distributed noise-shaping quantization: II. Classical frames, in Excursions in Harmonic Analysis, Volume 5 (Springer, 2017), pp. 179–198

    Google Scholar 

  13. E. Chou, C. S. Güntürk, F. Krahmer, R. Saab, Ö. Yılmaz, Noise-shaping quantization methods for frame-based and compressive sampling systems, in Sampling Theory, a Renaissance (Springer, 2015), pp. 157–184

    Google Scholar 

  14. I. Daubechies, R. DeVore, Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order. Ann. Math. 158(2), 679–710 (2003)

    Article  MathSciNet  Google Scholar 

  15. M.A. Davenport, J. Romberg, An overview of low-rank matrix recovery from incomplete observations. IEEE J. Sel. Top. Signal Process. 10(4), 608–622 (2016)

    Article  Google Scholar 

  16. P. Deift, F. Krahmer, C.S. Güntürk, An optimal family of exponentially accurate one-bit sigma-delta quantization schemes. Commun. Pure Appl. Math. 64(7), 883–919 (2011)

    Article  MathSciNet  Google Scholar 

  17. S. Dirksen, Dimensionality reduction with subgaussian matrices: a unified theory. Found. Comput. Math. 16(5), 1367–1396 (2016)

    Article  MathSciNet  Google Scholar 

  18. S. Dirksen, H.C. Jung, H. Rauhut, One-bit compressed sensing with Gaussian circulant matrices. arXiv:1710.03287 (2017)

  19. S. Dirksen, G. Lecué, H. Rauhut, On the gap between restricted isometry properties and sparse recovery conditions. IEEE Trans. Inform. Theory 64(8), 5478–5487 (2018)

    Article  MathSciNet  Google Scholar 

  20. S. Dirksen, S. Mendelson, Non-gaussian hyperplane tessellations and robust one-bit compressed sensing. arXiv:1805.09409

  21. S. Dirksen, S. Mendelson, Robust one-bit compressed sensing with partial circulant matrices. arXiv:1812.06719

  22. S. Dirksen, S. Mendelson. Unpublished manuscript

    Google Scholar 

  23. D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  24. A. Eftekhari, M.B. Wakin, New analysis of manifold embeddings and signal recovery from compressive measurements. Appl. Comput. Harmon. Anal. 39(1), 67–109 (2015)

    Article  MathSciNet  Google Scholar 

  25. J.-M. Feng, F. Krahmer, An RIP-based approach to \(\varSigma \varDelta \) quantization for compressed sensing. IEEE Signal Process. Lett. 21(11), 1351–1355 (2014)

    Article  Google Scholar 

  26. J.-M. Feng, F. Krahmer, R. Saab, Quantized compressed sensing for partial random circulant matrices. arXiv:1702.04711 (2017)

  27. S. Foucart, Flavors of Compressive Sensing (Springer International Publishing, Cham, 2017), pp. 61–104

    Google Scholar 

  28. S. Foucart, R. Lynch, Recovering low-rank matrices from binary measurements. Preprint (2018)

    Google Scholar 

  29. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013)

    Google Scholar 

  30. V.K. Goyal, M. Vetterli, N.T. Thao, Quantized overcomplete expansions in \(\mathbb{R}^N\) analysis, synthesis, and algorithms. IEEE Trans. Inform. Theory 44(1), 16–31 (1998)

    Article  MathSciNet  Google Scholar 

  31. R.M. Gray, D.L. Neuhoff, Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998)

    Article  Google Scholar 

  32. R.M. Gray, T.G. Stockham, Dithered quantizers. IEEE Trans. Inf. Theory 39(3), 805–812 (1993)

    Article  Google Scholar 

  33. C.S. Güntürk, One-bit sigma-delta quantization with exponential accuracy. Commun. Pure Appl. Math. 56(11), 1608–1630 (2003)

    Article  MathSciNet  Google Scholar 

  34. C.S. Güntürk, M. Lammers, A.M. Powell, R. Saab, Ö. Yılmaz, Sobolev duals for random frames and \(\varSigma \varDelta \) quantization of compressed sensing measurements. Found. Comput. Math. 13(1), 1–36 (2013)

    Article  MathSciNet  Google Scholar 

  35. I. Haviv, O. Regev, The restricted isometry property of subsampled Fourier matrices, in SODA ’16 (Philadelphia, PA, USA, 2016), pp. 288–297

    Google Scholar 

  36. T. Huynh, R. Saab, Fast binary embeddings, and quantized compressed sensing with structured matrices. arXiv:1801.08639 (2018)

  37. L. Jacques, A quantized Johnson-Lindenstrauss lemma: the finding of Buffon’s needle. IEEE Trans. Inf. Theory 61(9), 5012–5027 (2015)

    Article  MathSciNet  Google Scholar 

  38. L. Jacques, Error decay of (almost) consistent signal estimations from quantized gaussian random projections. IEEE Trans. Inf. Theory 62(8), 4696–4709 (2016)

    MathSciNet  MATH  Google Scholar 

  39. L. Jacques, Small width, low distortions: quantized random embeddings of low-complexity sets. IEEE Trans. Inf. Theory 63(9), 5477–5495 (2017)

    MathSciNet  MATH  Google Scholar 

  40. L. Jacques, V. Cambareri, Time for dithering: fast and quantized random embeddings via the restricted isometry property. Inf. Inference: A J. IMA 6(4), 441–476 (2017)

    Google Scholar 

  41. L. Jacques, K. Degraux, C. De Vleeschouwer, Quantized iterative hard thresholding: Bridging 1-bit and high-resolution quantized compressed sensing. arXiv:1305.1786 (2013)

  42. L. Jacques, J.N. Laska, P.T. Boufounos, R.G. Baraniuk, Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inform. Theory 59(4), 2082–2102 (2013)

    Article  MathSciNet  Google Scholar 

  43. K. Knudson, R. Saab, R. Ward, One-bit compressive sensing with norm estimation. IEEE Trans. Inform. Theory 62(5), 2748–2758 (2016)

    Article  MathSciNet  Google Scholar 

  44. F. Krahmer, S. Mendelson, H. Rauhut, Suprema of chaos processes and the restricted isometry property. Comm. Pure Appl. Math. 67(11), 1877–1904 (2014)

    Article  MathSciNet  Google Scholar 

  45. F. Krahmer, R. Saab, Ö. Yilmaz, Sigma-delta quantization of sub-gaussian frame expansions and its application to compressed sensing. Inf. Inference 3(1), 40–58 (2014)

    Article  MathSciNet  Google Scholar 

  46. J.N. Laska, P.T. Boufounos, M.A. Davenport, R.G. Baraniuk, Democracy in action: quantization, saturation, and compressive sensing. Appl. Comput. Harmonic Anal. 31(3), 429–443 (2011)

    Article  MathSciNet  Google Scholar 

  47. M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  48. S. Mendelson, Learning without concentration. J. ACM 62(3), Art. 21, 25 (2015)

    Google Scholar 

  49. S. Mendelson, H. Rauhut, R. Ward, Improved bounds for sparse recovery from subsampled random convolutions. Ann. Appl. Probab. 28(6), 3491–3527 (2018)

    Article  MathSciNet  Google Scholar 

  50. A. Montanari, N. Sun, Spectral algorithms for tensor completion. Comm. Pure Appl. Math. 71(11), 2381–2425 (2018)

    Article  MathSciNet  Google Scholar 

  51. A. Moshtaghpour, L. Jacques, V. Cambareri, K. Degraux, C. De Vleeschouwer, Consistent basis pursuit for signal and matrix estimates in quantized compressed sensing. IEEE Signal Process. Lett. 23(1), 25–29 (2016)

    Article  Google Scholar 

  52. S. Oymak, B. Recht, Near-optimal bounds for binary embeddings of arbitrary sets. arXiv:1512.04433 (2015)

  53. Y. Plan, R. Vershynin, One-bit compressed sensing by linear programming. Comm. Pure Appl. Math. 66(8), 1275–1297 (2013)

    Article  MathSciNet  Google Scholar 

  54. Y. Plan, R. Vershynin, Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach. IEEE Trans. Inform. Theory 59(1), 482–494 (2013)

    Article  MathSciNet  Google Scholar 

  55. Y. Plan, R. Vershynin, Dimension reduction by random hyperplane tessellations. Discrete Comput. Geom. 51(2), 438–461 (2014)

    Article  MathSciNet  Google Scholar 

  56. H. Rauhut, R. Schneider, Z. Stojanac, Low rank tensor recovery via iterative hard thresholding. Linear Algebra Appl. 523, 220–262 (2017)

    Article  MathSciNet  Google Scholar 

  57. L. Roberts, Picture coding using pseudo-random noise. IRE Trans. Inf. Theory 8(2), 145–154 (1962)

    Article  Google Scholar 

  58. J. Romberg, Compressive sensing by random convolution. SIAM J. Imaging Sci. 2(4), 1098–1128 (2009)

    Article  MathSciNet  Google Scholar 

  59. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Comm. Pure Appl. Math. 61(8), 1025–1045 (2008)

    Article  MathSciNet  Google Scholar 

  60. R. Saab, R. Wang, Ö. Yılmaz, Quantization of compressive samples with stable and robust recovery. Appl. Comput. Harmonic Anal. 44(1), 123–143 (2018)

    Article  MathSciNet  Google Scholar 

  61. G. Schechtman, Two observations regarding embedding subsets of Euclidean spaces in normed spaces. Adv. Math. 200(1), 125–135 (2006)

    Article  MathSciNet  Google Scholar 

  62. R. Vershynin, High-Dimensional Probability (Cambridge University Press, 2018)

    Google Scholar 

  63. C. Xu, L. Jacques, Quantized compressive sensing with RIP matrices: the benefit of dithering. arXiv:1801.05870 (2018)

Download references

Acknowledgements

It is a pleasure to thank the anonymous reviewer, Rayan Saab, and especially Laurent Jacques for many comments that improved this book chapter. This work was supported by the DFG through the project Quantized Compressive Spectrum Sensing (QuaCoSS), which is part of the Priority Program SPP 1798 Compressive Sensing in Information Processing (COSIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjoerd Dirksen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dirksen, S. (2019). Quantized Compressed Sensing: A Survey. In: Boche, H., Caire, G., Calderbank, R., Kutyniok, G., Mathar, R., Petersen, P. (eds) Compressed Sensing and Its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-73074-5_2

Download citation

Publish with us

Policies and ethics