Skip to main content
Log in

A challenge in washing water with the sun: 24h of SODIS fails to inactivate Acanthamoeba castellanii cysts and internalized Pseudomonas aeruginosa under strong real sun conditions

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Despite access to drinking water being a basic human right, the availability of safe drinking water remains a privilege that many do not have and as a result, many lives are lost each year due to waterborne diseases associated with the consumption of biologically unsafe water. To face this situation, different low-cost household drinking water treatment technologies (HDWT) have been developed, and among them is solar disinfection (SODIS). Despite the effectiveness of SODIS and the epidemiological gains being consistently documented in the literature, there is a lack of evidence of the effectiveness of the batch-SODIS process against protozoan cysts as well as their internalized bacteria under real sun conditions. This work evaluated the effectiveness of the batch-SODIS process on the viability of Acanthamoeba castellanii cysts, and internalized Pseudomonas aeruginosa. Dechlorinated tap water contaminated with 5.6 × 103 cysts/L, contained in PET (polyethylene terephthalate) bottles, was exposed for 8 h a day to strong sunlight (531–1083 W/m2 of maximum insolation) for 3 consecutive days. The maximum water temperature inside the reactors ranged from 37 to 50 °C. Cyst viability was assessed by inducing excystment on non-nutrient agar, or in water with heat-inactivated Escherichia coli. After sun exposure for 0, 8, 16 and 24 h, the cysts remained viable and without any perceptible impairment in their ability to excyst. 3 and 5.5 log CFU/mL of P. aeruginosa were detected in water containing untreated and treated cysts, respectively, after 3 days of incubation at 30 °C. The batch-SODIS process is unable to inactivate A. castellanii cysts as well as its internalized bacteria. Although the use of batch SODIS by communities should continue to be encouraged, SODIS-disinfected water should be consumed within 3 days.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Akowanou, A. V. O., & Aina, M. P. (2021). Ceramic water filter as a household water treatment system. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Clean water and sanitation. Encyclopedia of the UN sustainable development goals. Springer. https://doi.org/10.1007/978-3-319-70061-8_189-1

    Chapter  Google Scholar 

  2. Aksozek, A., Mcclellan, K., Howard, K., Niederkorn, J. Y., & Alizadeh, H. (2002). Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. Journal of Parasitology, 88(3), 621–623. https://doi.org/10.1645/0022-3395(2002)088[0621:ROACCT]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  3. Amatobi, D. A., & Agunwamba, J. C. (2022). Design, construction and testing of an improved solar water disinfection system (SODIS). Applied Water Science, 12, 270. https://doi.org/10.1007/s13201-022-01801-5

    Article  Google Scholar 

  4. Amirsoleimani, A., & Brion, G. M. (2021). Solar disinfection of turbid hygiene waters in Lexington, KY, USA. Journal of Water and Health, 19(4), 642–656. https://doi.org/10.2166/wh.2021.003

    Article  PubMed  Google Scholar 

  5. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). APHA, AWWA, WPCF.

    Google Scholar 

  6. Aquinaga, V. K., & Medeiros, G. A. (2022). Structure performance for the treatment of rain source water based on the SODIS method. Revista Ibero-Americana de Ciências Ambientais, 13(2), 104–116. https://doi.org/10.6008/CBPC2179-6858.2022.002.0010

    Article  Google Scholar 

  7. Aykur, M., & Dagci, H. (2021). Evaluation of molecular characterization and phylogeny for quantification of Acanthamoeba and Naegleria fowleri in various water sources. Turkey. PLoS One, 16(8), e0256659. https://doi.org/10.1371/journal.pone.0256659

    Article  CAS  PubMed  Google Scholar 

  8. Bain, R., Cronk, R., Hossain, R., Bonjour, S., Onda, K., Wright, J., Yang, H., Slaymaker, T., Hunter, P., Prüss-Ustün, A., & Bartram, J. (2014). Global Assessment of exposure to faecal contamination through drinking water based on a systematic review. Tropical Medicine & International Health, 19, 917–927. https://doi.org/10.1111/tmi.12334

    Article  Google Scholar 

  9. Bain, R., Johnston, R., Khan, S., Hancioglu, A., & Slaymaker, T. (2021). Monitoring drinking water quality in nationally representative household surveys in low- and middle-income countries: Cross-sectional analysis of 27 multiple indicator cluster surveys 2014–2020. Environmental Health Perspectives, 129(9), 97010. https://doi.org/10.1289/EHP8459

    Article  PubMed  Google Scholar 

  10. Baker, M. N., & Taras, M. J. (1981). The quest for pure water: The history of water purification from the earliest records to the twentieth century. American Water Works Association.

    Google Scholar 

  11. Bellini, N. K., Thiemann, O. H., Reyes-Batlle, M., Lorenzo-Morales, J., & Costa, A. O. (2022). A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil—A systematic review. Memorias do Instituto Oswaldo Cruz, 117, e210373. https://doi.org/10.1590/0074-02760210373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boratto, P. V., Dornas, F. P., Andrade, K. R., Rodrigues, R., Peixoto, F., Silva, L. C., La Scola, B., Costa, A. O., de Almeida, G. M., Kroon, E. G., & Abrahão, J. S. (2014). Amoebas as mimivirus bunkers: increased resistance to UV light, heat and chemical biocides when viruses are carried by amoeba hosts. Archives of Virology, 159(5), 1039–1043. https://doi.org/10.1007/s00705-013-1924-z

    Article  CAS  PubMed  Google Scholar 

  13. Castro-Alférez, M., Polo-López, M. I., Marugán, J., & Fernández-Ibáñez, P. (2018). Validation of a solar-thermal water disinfection model for Escherichia coli inactivation in pilot scale solar reactors and real conditions. Chemical Engineering Journal, 331, 831–840. https://doi.org/10.1016/j.cej.2017.09.015

    Article  CAS  Google Scholar 

  14. Cervero-Aragó, S., Rodríuez-Marínez, S., Canals, O., Salvadó, H., & Araujo, R. M. (2013). Effect of thermal treatment on free-living amoeba inactivation. Journal of Applied Microbiology, 116(3), 1364–5072. https://doi.org/10.1111/jam.12379

    Article  CAS  Google Scholar 

  15. Cervero-Aragó, S., Sommer, R., & Araujo, R. M. (2014). Effect of UV irradiation (253.7 nm) on free legionella and legionella associated with its amoebae hosts. Water Research, 67, 299–309. https://doi.org/10.1016/j.watres.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  16. Chaúque, B. J. M., Benetti, A. D., Corção, G., Silva, C. E., Gonçalves, R. F., & Rott, M. B. (2021). A new continuous-flow solar water disinfection system inactivating cysts of Acanthamoeba castellanii, and bacteria. Photochemical & Photobiological Sciences, 20(1), 123–137. https://doi.org/10.1007/s43630-020-00008-4

    Article  CAS  Google Scholar 

  17. Chaúque, B. J. M., Benetti, A. D., & Rott, M. B. (2022). Epidemiological and immunological gains from solar water disinfection: FACT or wishful thinking? Tropical Medicine & International Health, 27(10), 873–880. https://doi.org/10.1111/tmi.13807

    Article  Google Scholar 

  18. Chaúque, B. J. M., Chicumbe, C. M., Cossa, V. C., & Rott, M. B. (2021). Spatial arrangement of well and latrine and their influence on water quality in clayey soil—A study in low-income peri-urban neighborhoods in Lichinga, Mozambique. Journal of Water, Sanitation and Hygiene for Development, 11(2), 241–254. https://doi.org/10.2166/washdev.2021.137

    Article  Google Scholar 

  19. Chaúque, B. J. M., Dos Santos, D. L., Anvari, D., & Rott, M. B. (2022). Prevalence of free-living amoebae in swimming pools and recreational waters, a systematic review and meta-analysis. Parasitology Research, 121(11), 3033–3050. https://doi.org/10.1007/s00436-022-07631-3

    Article  PubMed  Google Scholar 

  20. Chaúque, B. J. M., & Rott, M. B. (2021). Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. Chemosphere, 281, 130754. https://doi.org/10.1016/j.chemosphere.2021.130754

    Article  CAS  PubMed  Google Scholar 

  21. Chaúque, B. J. M., & Rott, M. B. (2021). Photolysis of sodium chloride and sodium hypochlorite by ultraviolet light inactivates the trophozoites and cysts of Acanthamoeba castellanii in the water matrix. Journal of Water and Health, 19(1), 190–202. https://doi.org/10.2166/wh.2020.401

    Article  Google Scholar 

  22. Chaúque, B. J. M., Issufo, M., Guedes, V. H. Z., Benetti, A. D., & Rott, M. B. (2022). Efficacy of solar disinfection (SODIS) in inactivating viral pathogens in water, with emphasis on Sars-Cov-2—Review. Mozambican Journal of Applied Sciences. https://doi.org/10.53224/mjas/ispg/2022v1n7

    Article  Google Scholar 

  23. Dey, R., Folkins, M. A., & Ashbolt, N. J. (2021). Extracellular amoebal-vesicles: Potential transmission vehicles for respiratory viruses. NPJ Biofilms Microbiomes, 7(1), 25. https://doi.org/10.1038/s41522-021-00201-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dey, R., Rieger, A. M., Stephens, C., & Ashbolt, N. J. (2019). Interactions of Pseudomonas aeruginosa with Acanthamoeba polyphaga observed by imaging flow cytometry. Cytometry Part A, 95(5), 555–564. https://doi.org/10.1002/cyto.a.23768

    Article  Google Scholar 

  25. Dietersdorfer, E., Cervero-Aragó, S., Sommer, R., Kirschner, A. K., & Walochnik, J. (2016). Optimized methods for Legionella pneumophila release from its Acanthamoeba hosts. BMC Microbiology, 16, 74. https://doi.org/10.1186/s12866-016-0691-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farhadi, R., Teimourlou, R. F., Abbasalizadeh, M., & Ghosta, Y. (2022). Clean agricultural production by solar water disinfection in hydroponic systems using synergistic effects. Sustainable Energy Technologies and Assessments, 52, 102331. https://doi.org/10.1016/j.seta.2022.102331

    Article  Google Scholar 

  27. Freitas, B. L. S., Terin, U. C., Fava, N. M. N., Maciel, P. M. F., Garcia, L. A. T., Medeiros, R. C., Oliveira, M., Fernandez-Ibañez, P., Byrne, J. A., & Sabogal-Paz, L. P. (2022). A critical overview of household slow sand filters for water treatment. Water Research, 208, 117870. https://doi.org/10.1016/j.watres.2021.117870

    Article  CAS  PubMed  Google Scholar 

  28. Garajová, M., Mrva, M., Vaškovicová, N., Martinka, M., Melicherová, J., & Valigurová, A. (2019). Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture. Science and Reports, 9, 4466. https://doi.org/10.1038/s41598-019-41084-6

    Article  CAS  Google Scholar 

  29. García-Gil, Á., García-Muñoz, R. A., Martínez-García, A., Polo-López, M. I., Wasihun, A. G., Teferi, M., Asmelash, T., Conroy, R., McGuigan, K. G., & Marugán, J. (2022). Solar water disinfection in large-volume containers: from the laboratory to the field. A case study in Tigray, Ethiopia. Scientific Reports, 12, 18933. https://doi.org/10.1038/s41598-022-23709-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garre, A., Egea, J. A., Esnoz, A., Palop, A., & Fernandez, P. S. (2019). Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation. Food Research International, 119, 76–83. https://doi.org/10.1016/j.foodres.2019.01.059

    Article  CAS  PubMed  Google Scholar 

  31. Guy, H., & Mili, V. (2016). The costs of meeting the 2030 sustainable development goal targets on drinking water, sanitation, and hygiene. World Bank, Washington, DC. © World Bank. Retrieved from https://openknowledge.worldbank.org/handle/10986/23681.

  32. He, Z., Wang, L., Ge, Y., Zhang, S., Tian, Y., Yang, X., & Shu, L. (2021). Both viable and inactivated amoeba spores protect their intracellular bacteria from drinking water disinfection. Journal of Hazardous Materials, 417, 126006. https://doi.org/10.1016/j.jhazmat.2021.126006

    Article  CAS  PubMed  Google Scholar 

  33. Heaselgrave, W., & Kilvington, S. (2010). Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Applied and Environment Microbiology, 76(17), 6010–6012. https://doi.org/10.1128/AEM.00445-10

    Article  CAS  Google Scholar 

  34. Heaselgrave, W., & Kilvington, S. (2011). The efficacy of simulated solar disinfection (SODIS) against Ascaris, Giardia, Acanthamoeba, Naegleria, Entamoeba and Cryptosporidium. Acta Tropica, 119(2–3), 138–143. https://doi.org/10.1016/j.actatropica.2011.05.004

    Article  PubMed  Google Scholar 

  35. Heaselgrave, W., Patel, N., Kilvington, S., Kehoe, S. C., & McGuigan, K. G. (2006). Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water: A laboratory study using simulated sunlight. Letters in Applied Microbiology, 43(2), 125–130. https://doi.org/10.1111/j.1472-765X.2006.01940.x

    Article  CAS  PubMed  Google Scholar 

  36. Hong, Y., Shi, W., Wang, H., Ma, D., Ren, Y., Wang, Y., Li, Q., & Gao, B. (2022). Mechanisms of Escherichia coli inactivation during solar-driven photothermal disinfection. Environmental Science: Nano, 9(3), 1000–1010. https://doi.org/10.1039/D1EN00999K

    Article  CAS  Google Scholar 

  37. Horn, S., Pieters, R., & Bezuidenhout, C. (2016). pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes. Journal of Water and Health, 14(6), 890–900. https://doi.org/10.2166/wh.2016.009

    Article  PubMed  Google Scholar 

  38. Hsueh, T. Y., & Gibson, K. E. (2015). Interactions between human norovirus surrogates and Acanthamoeba spp. Applied and Environment Microbiology, 81(12), 4005–4013. https://doi.org/10.1128/AEM.00649-15

    Article  CAS  Google Scholar 

  39. Karim, Md. R., Khan, Md. H. R. B., Akash, M.-S.-A., & Shams, S. (2021). Effectiveness of solar disinfection for household water treatment: An experimental and modeling study. Journal of Water, Sanitation and Hygiene for Development, 11(3), 374–385. https://doi.org/10.2166/washdev.2021.243

    Article  Google Scholar 

  40. Lonnen, J., Kilvington, S., Kehoe, S. C., Al-Touati, F., & McGuigan, K. G. (2005). Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking Water. Water Research, 39(5), 877–883. https://doi.org/10.1016/j.watres.2004.11.023

    Article  CAS  PubMed  Google Scholar 

  41. Lorenzo-Morales, J., Coronado-Alvarez, N., Martínez-Carretero, E., Maciver, S. K., & Valladares, B. (2007). Detection of four adenovirus serotypes within water-isolated strains of Acanthamoeba in the Canary Islands, Spain. The American Journal of Tropical Medicine and Hygiene, 77(4), 753–756. https://doi.org/10.4269/ajtmh.2007.77.753

    Article  CAS  PubMed  Google Scholar 

  42. McGuigan, K. G., Conroy, R. M., Mosler, H. J., du Preez, M., Ubomba-Jaswa, E., & Fernandez-Ibañez, P. (2012). Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials, 235–236, 29–46. https://doi.org/10.1016/j.jhazmat.2012.07.053

    Article  CAS  PubMed  Google Scholar 

  43. McGuigan, K. G., Méndez-Hermida, F., Castro-Hermida, J. A., Ares-Mazás, E., Kehoe, S. C., Boyle, M., Sichel, C., Fernández-Ibáñez, P., Meyer, B. P., Ramalingham, S., & Meyer, E. A. (2006). Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. Journal of Applied Microbiology, 101, 453–463. https://doi.org/10.1111/j.1365-2672.2006.02935.x

    Article  CAS  PubMed  Google Scholar 

  44. McMahon, J. (2022). Chapter 7—water purity and sustainable water treatment systems for developing countries. In T. M. Letcher (Ed.), Water and climate change (pp. 115–144). Elsevier. https://doi.org/10.1016/B978-0-323-99875-8.00021-5

    Chapter  Google Scholar 

  45. Milanez, G. D., Carlos, K. B., Adao, M. E., Ayson, B. B., Dicon, A. V., Gahol, R. A. M., Lacre, S. K. S., Marquez, F. P. E., Perez, A. J. M., & Karanis, P. (2022). Epidemiology of free-living amoebae infections in Africa: A review. Pathogens and Global Health, 22, 1–8. https://doi.org/10.1080/20477724.2022.2160890

    Article  Google Scholar 

  46. Nasher, F., & Wren, B. W. (2022). Transient internalization of Campylobacter jejuni in amoebae enhances subsequent invasion of human cells. Microbiology (Reading), 168(2), 001143. https://doi.org/10.1099/mic.0.001143

    Article  CAS  PubMed  Google Scholar 

  47. Ngasala, T. M., Masten, S. J., & Phanikumar, M. S. (2019). Impact of domestic wells and hydrogeologic setting on water quality in Peri-urban Dar es Salaam, Tanzania. Science of the Total Environment, 686, 1238–1250. https://doi.org/10.1016/j.scitotenv.2019.05.202

    Article  CAS  PubMed  Google Scholar 

  48. Nielsen, A. M., Garcia, L. A. T., Silva, K. J. S., Sabogal-Paz, L. P., Hincapié, M. M., Montoya, L. J., Galeano, L., Galdos-Balzategui, A., Reygadas, F., Herrera, C., Golden, S., Byrne, J. A., & Fernández-Ibáñez, P. (2022). Chlorination for low-cost household water disinfection—A critical review and status in three Latin American countries. International Journal of Hygiene and Environmental Health, 244, 114004. https://doi.org/10.1016/j.ijheh.2022.114004

    Article  CAS  PubMed  Google Scholar 

  49. Nwankwo, E. J., Agunwamba, J. C., & Nnaji, C. C. (2019). Effect of radiation intensity, water temperature and support-base materials on the inactivation efficiency of solar water disinfection (SODIS). Water Resources Management, 33, 4539–4551. https://doi.org/10.1007/s11269-019-02407-4

    Article  Google Scholar 

  50. Prüss-Ustün, A., Wolf, J., Bartram, J., Clasen, T., Cumming, O., Freeman, M. C., et al. (2019). Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. International Journal of Hygiene and Environmental Health, 222(5), 765–777. https://doi.org/10.1016/j.ijheh.2019.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rai, B., Pal, R., Kar, S., & Tsering, D. C. (2010). Solar disinfection improves drinking water quality to prevent diarrhea in under-five children in Sikkim, India. Journal of Global Infectious Diseases, 2(3), 221–225. https://doi.org/10.4103/0974-777X.68532

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rayamajhee, B., Subedi, D., Peguda, H. K., Willcox, M. D., Henriquez, F. L., & Carnt, N. (2021). A systematic review of intracellular microorganisms within Acanthamoeba to understand potential impact for infection. Pathogens, 10(2), 225. https://doi.org/10.3390/pathogens10020225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saberi, R., Fakhar, M., Makhlough, A., Sedighi, O., Tabaripour, R., Asfaram, S., Latifi, A., Espahbodi, F., & Sharifpour, A. (2021). First evidence for colonizing of Acanthamoeba T4 genotype in urinary tracts of patients with recurrent urinary tract infections. Acta Parasitologica. https://doi.org/10.1007/s11686-021-00358-8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sales-Lérida, D., Grosso, J., Martínez-Jiménez, P. M., & Manzano, M. (2023). A low cost and eco-sustainable device to determine the end of the disinfection process in SODIS. Sensors, 23(2), 575. https://doi.org/10.3390/s23020575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Santos, D. L., Kwitko, S., & Marinho, D. R. (2018). Acanthamoeba keratitis in Porto Alegre (Southern Brazil): 28 cases and risk factors. Parasitology Research, 117(3), 747–750. https://doi.org/10.1007/s00436-017-5745-y

    Article  PubMed  Google Scholar 

  56. Sarink, M. J., van der Meijs, N. L., Denzer, K., Koenderman, L., Tielens, A. G. M., & van Hellemond, J. J. (2022). Three encephalitis-causing amoebae and their distinct interactions with the Host. Trends in Parasitology, 38(3), 230–245. https://doi.org/10.1016/j.pt.2021.10.004

    Article  CAS  PubMed  Google Scholar 

  57. Sente, C., Erume, J., Naigaga, I., Magambo, P. K., Ochwo, S., Mulindwa, J., Namara, B. G., Kato, C. D., Sebyatika, G., Muwonge, K., & Ocaido, M. (2016). Occurrence and genetic characterisation of Acanthamoeba spp. from environmental and domestic water sources in Queen Elizabeth Protected Area, Uganda. Parasites & Vectors, 9, 127. https://doi.org/10.1186/s13071-016-1411-y

    Article  CAS  Google Scholar 

  58. Sharan, R., Chhibber, S., & Reed, R. H. (2011). Inactivation and sub-lethal injury of Salmonella typhi, Salmonella typhimurium and Vibrio cholerae in copper water storage vessels. BMC Infectious Diseases, 11, 204. https://doi.org/10.1186/1471-2334-11-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Soboksa, N. E., Gari, S. R., Hailu, A. B., Donacho, D. O., & Alemu, B. M. (2020). Effectiveness of solar disinfection water treatment method for reducing childhood diarrhoea: A systematic review and meta-analysis. British Medical Journal Open, 10(12), e038255. https://doi.org/10.1136/bmjopen-2020-038255

    Article  Google Scholar 

  60. Souter, P. F., Cruickshank, G. D., Tankerville, M. Z., Keswick, B. H., Ellis, B. D., Langworthy, D. E., Metz, K. A., Appleby, M. R., Hamilton, N., Jones, A. L., & Perry, J. D. (2003). Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water. Journal of Water and Health, 1(2), 73–84. https://doi.org/10.2166/wh.2003.0009

    Article  CAS  PubMed  Google Scholar 

  61. Sriram, R., Shoff, M., Booton, G., Fuerst, P., & Visvesvara, G. S. (2008). Survival of acanthamoeba cysts after desiccation for more than 20 years. Journal of Clinical Microbiology, 46(12), 4045–4048. https://doi.org/10.1128/JCM.01903-08

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ssemakalu, C. C., Ubomba-Jaswa, E., Motaung, K. S., & Pillay, M. (2014). Influence of solar water disinfection on immunity against cholera—Review. Journal of Water and Health, 12(3), 393–398. https://doi.org/10.2166/wh.2014.158

    Article  PubMed  Google Scholar 

  63. Thomas, V., Bouchez, T., Nicolas, V., Robert, S., Loret, J. F., & Lévi, Y. (2004). Amoebae in domestic water systems: resistance to disinfection treatments and implication in legionella persistence. Journal of Applied Microbiology, 97, 950–963. https://doi.org/10.1111/j.1365-2672.2004.02391.x

    Article  CAS  PubMed  Google Scholar 

  64. Thomas, V., McDonnell, G., Denyer, S. P., & Maillard, J. Y. (2010). Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Reviews, 34, 231–259. https://doi.org/10.1111/j.1574-6976.2009.00190.x

    Article  CAS  PubMed  Google Scholar 

  65. UN (United Nations). (2022). Goal 6: Ensure availability and sustainable management of water and sanitation for all: United Nations Department of Economic and Social Affairs. Retrieved from https://sdgs.un.org/goals/goal6.

  66. Upfold, N. S., Luke, G. A., & Knox, C. (2021). Occurrence of human enteric viruses in water sources and shellfish: A focus on Africa. Food and Environmental Virology, 13(1), 1–31. https://doi.org/10.1007/s12560-020-09456-8

    Article  PubMed  PubMed Central  Google Scholar 

  67. Valciņa, O., Pūle, D., Mališevs, A., Trofimova, J., Makarova, S., Konvisers, G., Bērziņš, A., & Krūmiņa, A. (2019). Co-occurrence of free-living amoeba and Legionella in drinking water supply systems. Medicina (Kaunas, Lithuania), 55(8), 492. https://doi.org/10.3390/medicina55080492

    Article  PubMed  Google Scholar 

  68. Verani, M., Di Giuseppe, G., Tammaro, C., & Carducci, A. (2010). Investigating the role of Acanthamoeba polyphaga in protecting human adenovirus from water disinfection treatment. European Journal of Protistology, 54, 11–18. https://doi.org/10.1016/j.ejop.2016.02.006

    Article  Google Scholar 

  69. Visvesvara, G. S., Moura, H., & Schuster, F. L. (2007). Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology & Medical Microbiology, 50(1), 1–26. https://doi.org/10.1111/j.1574-695X.2007.00232.x

    Article  CAS  Google Scholar 

  70. WHO (World Health Organization). (2019). Results of round II of the WHO international scheme to evaluate household water treatment technologies. Retrieved from https://apps.who.int/iris/handle/10665/325896.

  71. Wolf, J., Hubbard, S., Brauer, M., Ambelu, A., Arnold, B. F., Bain, R., Bauza, V., Brown, J., Caruso, B. A., Clasen, T., Colford, J. M., Jr., Freeman, M. C., Gordon, B., Johnston, R. B., Mertens, A., Prüss-Ustün, A., Ross, I., Stanaway, J., Zhao, J. T., … Boisson, S. (2022). Effectiveness of interventions to improve drinking water, sanitation, and handwashing with soap on risk of diarrhoeal disease in children in low-income and middle-income settings: A systematic review and meta-analysis. Lancet, 400(10345), 48–59. https://doi.org/10.1016/S0140-6736(22)00937-0

    Article  PubMed  Google Scholar 

  72. Xia, Y., Wan, Q., Xu, X., Cao, R., Li, Y., Wang, J., Xu, H., Huang, T., & Wen, G. (2022). Solar disinfection of fungal spores in water: Kinetics, influencing factors, mechanisms and regrowth. Chemical Engineering Journal, 428, 132065. https://doi.org/10.1016/j.cej.2021.132065

    Article  CAS  Google Scholar 

  73. Yousuf, F. A., Siddiqui, R., & Khan, N. A. (2017). Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan. Revista do Instituto de Medicina Tropical de São Paulo, 59, e32. https://doi.org/10.1590/S1678-9946201759032

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

To CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the scholarship and scientific productivity fellowship granted to Beni J.M. Chaúque and Marilise B. Rott, respectively. To Camila Neugebauer Mello for providing the culture media in the first stage of the research.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BJMC, GC, ADB, and MBR contributed to the study conception and design. Material preparation, data collection analysis, and writing the first draft of the manuscript were performed by B.J.M.C. GC, ADB, and MBR reviewed the manuscript writing. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marilise Brittes Rott.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaúque, B.J.M., Corção, G., Benetti, A.D. et al. A challenge in washing water with the sun: 24h of SODIS fails to inactivate Acanthamoeba castellanii cysts and internalized Pseudomonas aeruginosa under strong real sun conditions. Photochem Photobiol Sci 22, 2179–2188 (2023). https://doi.org/10.1007/s43630-023-00440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00440-2

Keywords

Navigation