Skip to main content
Log in

Photoelectrochemical degradation of selected organic substances on Fe2O3 photoanodes: a comparison with TiO2

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photoelectrochemical degradation of selected aromatic substances, acid orange 7 (AO7), salicylic acid (SA), benzoic acid (BA), and 4-chlorophenol (4-CP) was studied on hematite (α-Fe2O3) and compared with titanium dioxide (TiO2), both deposited as thin films on conducting substrates (FTO/glass). Batch type reactors were used under backside and front side illumination. Electrical bias was applied on the semiconducting electrodes, such that only valence band processes leading to oxidative pathways were followed. The initial Faradaic efficiency, f0, of degradation processes was determined from the UV–Vis absorbance decrease of the starting materials. f0 for 1 mM AO7 degradation in 0.01 M sulphuric acid was found to be 7.5%. When the pH of the solution was neutral (pH 7.2) or alkaline (pH 13), f0 decreased to 1.7%. For 1 mM SA, f0 was 6.2% on hematite photoanodes and 6.1% on titanium dioxide. For 1 mM benzoic acid and 4-chlorophenol, f0 was an order of magnitude lower, but only on hematite. This is ascribed to the lack of OH· radical formation on hematite, which seems to be essential for the photooxidation of these compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: Mechanisms and materials. Chemical Reviews, 114(19), 9919–9986.

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy, J. H., & Frese, K. W. (1978). Photooxidation of water at α-Fe2O3 electrodes. Journal of the Electrochemical Society, 125(5), 709–714.

    Article  CAS  Google Scholar 

  3. Pourbaix, M. (1963). Atlas d’Équilibres Électrochimiques (p. 307). Gauthier-Villars et Cie.

    Google Scholar 

  4. Kennedy, J. H., & Anderman, M. (1983). Photoelectrolysis of water at α-Fe2O3 electrodes in acidic solution. Journal of the Electrochemical Society, 130(4), 848–852.

    Article  CAS  Google Scholar 

  5. Steier, L., Herraiz-Cardona, I., Gimenez, S., Fabregat-Santiago, F., Bisquert, J., Tilley, S. D., & Grätzel, M. (2014). Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Advanced Functional Materials, 24(48), 7681–7688. https://doi.org/10.1002/adfm.201402742

    Article  CAS  Google Scholar 

  6. Kment, Š, Riboni, F., Paušová, Š, Wang, L., Wang, L., Han, H., Hubička, Z., Krýsa, J., Schmuki, P., & Zboril, R. (2017). Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting—Superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 46(12), 3716–3769. https://doi.org/10.1039/C6CS00015K

    Article  CAS  PubMed  Google Scholar 

  7. Neumann-Spallart, M., Shinde, S. S., Mahadik, M., & Bhosale, C. H. (2013). Photoelectrochemical degradation of selected aromatic molecules. Electrochimica Acta, 111, 830–836.

    Article  CAS  Google Scholar 

  8. Mahadik, M. A., Shinde, S. S., Kumbhar, S. S., Pathan, H. M., Rajpure, K. Y., & Bhosale, C. H. (2015). Enhanced photocatalytic activity of sprayed Au doped ferric oxide thin films for salicylic acid degradation in aqueous medium. Journal of Photochemistry and Photobiology B: Biology, 142, 43–50.

    Article  CAS  PubMed  Google Scholar 

  9. Shinde, S. S., Bhosale, C. H., & Rajpure, K. Y. (2011). Photocatalytic oxidation of salicylic acid and 4-chlorophenol in aqueous solutions mediated by modified AlFe2O3 catalyst under sunlight. Journal of Molecular Catalysis A: Chemical, 347(1), 65–72.

    Article  CAS  Google Scholar 

  10. Chen, S., Li, J., Bai, J., Xia, L., Zhang, Y., Li, L., Xu, Q., & Zhou, B. (2018). Electron blocking and hole extraction by a dual-function layer for hematite with enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 237, 175–184.

    Article  CAS  Google Scholar 

  11. Mahadik, M. A., Shinde, S. S., Mohite, V. S., Kumbhar, S. S., Moholkar, A. V., Rajpure, K. Y., Ganesan, V., Nayak, J., Barman, S. R., & Bhosale, C. H. (2014). Visible light catalysis of rhodamine B using nanostructured Fe2O3, TiO2 and TiO2/Fe2O3 thin films. Journal of Photochemistry and Photobiology B: Biology, 133, 90–98.

    Article  CAS  PubMed  Google Scholar 

  12. Mahadik, M. A., Shinde, S. S., Rajpure, K. Y., & Bhosale, C. H. (2013). Photocatalytic oxidation of rhodamine B with ferric oxide thin films under solar illumination. Materials Research Bulletin, 48(10), 4058–4065.

    Article  CAS  Google Scholar 

  13. Krýsa, J., Baudys, M., Zlámal, M., Krýsová, H., Morozová, M., & Klusoň, P. (2014). Photocatalytic and photoelectrochemical properties of sol–gel TiO2 films of controlled thickness and porosity. Catalysis Today, 230, 2–7.

    Article  Google Scholar 

  14. Imrich, T., Krýsová, H., Neumann-Spallart, M., & Krýsa, J. (2021). Fe2O3 photoanodes: Photocorrosion protection by thin SnO2 and TiO2 films. Journal of Electroanalytical Chemistry, 892, 115282.

    Article  CAS  Google Scholar 

  15. Krýsa, J., Imrich, T., Paušová, Š, Krýsová, H., & Neumann-Spallart, M. (2019). Hematite films by aerosol pyrolysis: Influence of substrate and photocorrosion suppression by TiO2 capping. Catalysis Today, 335, 418–422.

    Article  Google Scholar 

  16. Hirano, K., & Bard, A. J. (1980). Semiconductor electrodes: XXVIII. Rotating ring-disk electrode studies of photo-oxidation of acetate and iodide at n-TiO2. Journal of the Electrochemical Society, 127(5), 1056–1059.

    Article  CAS  Google Scholar 

  17. Bourikas, K., Stylidi, M., Kondarides, D. I., & Verykios, X. E. (2005). Adsorption of acid orange 7 on the surface of titanium dioxide. Langmuir, 21(20), 9222–9230.

    Article  CAS  PubMed  Google Scholar 

  18. Guinea, E., Arias, C., Cabot, P. L., Garrido, J. A., Rodríguez, R. M., Centellas, F., & Brillas, E. (2008). Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Research, 42(1), 499–511.

    Article  CAS  PubMed  Google Scholar 

  19. Momeni, S., & Nematollahi, D. (2017). New insights into the electrochemical behavior of acid orange 7: Convergent paired electrochemical synthesis of new aminonaphthol derivatives. Scientific Reports, 7(1), 41963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arts, A., van den Berg, K. P., de Groot, M. T., & van der Schaaf, J. (2021). Electrochemical oxidation of benzoic acid and its aromatic intermediates on boron doped diamond electrodes. Current Research in Green and Sustainable Chemistry, 4, 100217.

    Article  CAS  Google Scholar 

  21. Colucci, J., Montalvo, V., Hernandez, R., & Poullet, C. (1999). Electrochemical oxidation potential of photocatalyst reducing agents. Electrochimica Acta, 44(15), 2507–2514.

    Article  CAS  Google Scholar 

  22. Rodrigo, M. A., Michaud, P. A., Duo, I., Panizza, M., Cerisola, G., & Comninellis, C. (2001). Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. Journal of the Electrochemical Society, 148(5), D60.

    Article  CAS  Google Scholar 

  23. Armstrong, D. A., Huie, R. E., Lymar, S., Koppenol, W. H., Merényi, G., Neta, P., Stanbury, D. M., Steenken, S., & Wardman, P. (2013). Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals. BioInorganic Reaction Mechanisms, 9(1–4), 59–61.

    CAS  Google Scholar 

  24. Atkinson, R. J., Posner, A. M., & Quirk, J. P. (1967). Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. The Journal of Physical Chemistry, 71(3), 550–558.

    Article  CAS  Google Scholar 

  25. Kosmulski, M. (2020). The pH dependent surface charging and points of zero charge. VIII. Update. Advances in Colloid and Interface Science, 275, 102064.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, Y., & Schoonen, M. A. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3–4), 543–556.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Grant Agency of the Czech Republic (Project Number 20-11635S) for financial support. Authors thank to H. Tarábková and R. Nebel from the J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic for AFM and FE-SEM analysis. This work was also supported from the grant of Specific university research—Grant A2_FCHT_2022_090.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Imrich or J. Krýsa.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 824 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imrich, T., Neumann-Spallart, M. & Krýsa, J. Photoelectrochemical degradation of selected organic substances on Fe2O3 photoanodes: a comparison with TiO2. Photochem Photobiol Sci 22, 419–426 (2023). https://doi.org/10.1007/s43630-022-00324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00324-x

Keywords

Navigation