Skip to main content
Log in

Selective population of triplet excited states in heavy-atom-free BODIPY-C60 based molecular assemblies

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photophysical studies on a BODIPY-fullerene-distyryl BODIPY triad (BDP-C60-DSBDP) and its reference dyads (BODIPY-fullerene; BDP-C60 and distyryl BODIPY-fullerene; DSBDP-C60) are presented herein. In the triad, the association of the two chromophore units linked by a fullerene moiety leads to strong near UV–Visible light absorption from 300 to 700 nm. The triplet-excited state was observed upon visible excitation in all these assemblies, and shown to be localized on the C60 or BODIPY moieties. Using quantitative nanosecond transient absorption, we provide a complete investigation on the lifetime and formation quantum yield of the triplet-excited state. In the BDP-C60 dyad, the triplet excited state of C60 (τ = 7 ± 1 μs) was obtained with a quantum yield of 40 ± 8%. For the DSBDP-C60 dyad and BDP-C60-DSBDP triad, a longer-lived triplet excited state with a lifetime of around 250 ± 20 μs centered on the DSBDP moiety was formed, with respective quantum yields of 37 ± 8 and 20 ± 4%. Triplet–triplet annihilation up-conversion is characterized in the BDP-C60 dyad and the bichromophoric triad in the presence of perylene and DSBDP-monomer as respective annihilators. The photo-induced formation of a long-lived 3DSBDP* in the triad coupled with panchromatic light absorption offers potential applications as a heavy-atom-free organic triplet photosensitizer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chemical Reviews, 113, 5322–5363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gärtner, F., Cozzula, D., Losse, S., Boddien, A., Anilkumar, G., Junge, H., Schulz, T., Marquet, N., Spannenberg, A., Gladiali, S., & Beller, M. (2011). Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction. Chemistry - A European Journal, 17, 6998–7006.

    Article  PubMed  CAS  Google Scholar 

  3. You, Y., & Nam, W. (2014). Designing photoluminescent molecular probes for singlet oxygen, hydroxyl radical, and iron-oxygen species. Chemical Science, 5, 4123–4135.

    Article  CAS  Google Scholar 

  4. Cakmak, Y., Kolemen, S., Duman, S., Dede, Y., Dolen, Y., Kilic, B., Kostereli, Z., Yildirim, L. T., Dogan, A. L., Guc, D., & Akkaya, E. U. (2011). Designing excited states: Theory-guided access to efficient photosensitizers for photodynamic action. Angewandte Chemie International Edition, 50, 11937–11941.

    Article  CAS  PubMed  Google Scholar 

  5. Singh-Rachford, T. N., & Castellano, F. N. (2010). Photon upconversion based on sensitized triplet-triplet annihilation. Coordination Chemistry Reviews, 254, 2560–2573.

    Article  CAS  Google Scholar 

  6. Zhao, J., Ji, S., & Guo, H. (2011). Triplet-triplet annihilation based upconversion: From triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Advances, 1, 937–950.

    Article  CAS  Google Scholar 

  7. Zhao, J., Wu, W., Sun, J., & Guo, S. (2013). Triplet photosensitizers: From molecular design to applications. Chemical Society Reviews, 42, 5323–5351.

    Article  CAS  PubMed  Google Scholar 

  8. Cui, X., Zhang, C., Xu, K., & Zhao, J. (2015). Application of singlet energy transfer in triplet state formation: Broadband visible light-absorbing triplet photosensitizers, molecular structure design, related photophysics and applications. Journal of Materials Chemistry C, 3, 8735–8759.

    Article  CAS  Google Scholar 

  9. McClenaghan, N. D., Leydet, Y., Maubert, B., Indelli, M. T., & Campagna, S. (2005). Excited-state equilibration: A process leading to long-lived metal-to-ligand charge transfer luminescence in supramolecular systems. Coordination Chemistry Reviews, 249, 1336–1350.

    Article  CAS  Google Scholar 

  10. Chi, Y., & Chou, P.-T. (2010). Transition-metal phosphors with cyclometalating ligands: Fundamentals and applications. Chemical Society Reviews, 39, 638–655.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, J., Yuan, X., Küçüköz, B., Li, S., Zhang, C., Majumdar, P., Karatay, A., Li, X., Yaglioglu, H. G., Elmali, A., Zhao, J., & Hayvali, M. (2014). Resonance energy transfer-enhanced rhodaminne-styryl bodipy dyad triplet photosensitizers. Journal of Materials Chemistry C, 2, 3900–3913.

    Article  CAS  Google Scholar 

  12. Zhou, Q., Zhou, M., Wei, Y., Zhou, X., Liu, S., Zhang, S., & Zhang, B. (2017). Solvent effects on the triplet-triplet annihilation upconversion of diiodo-Bodipy and perylene. Physical Chemistry Chemical Physics: PCCP, 19, 1516–1525.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, X., Hou, Y., Liu, L., & Zhao, J. (2021). Triplet photosensitizers showing strong absorption of visible light and long-lived triplet excited states and application in photocatalysis: A mini review. Energy and Fuels, 35, 18942–18956.

    Article  CAS  Google Scholar 

  14. Liu, J.-Y., El-Khouly, M. E., Fukuzumi, S., & Ng, D. K. P. (2011). Photoinduced electron transfer in a distyryl BODIPY–fullerene dyad. Chemistry–An Asian Journal, 6, 174–179.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, L., Yu, X., Wu, W., & Zhao, J. (2012). Styryl bodipy-C60 dyads as efficient heavy-atom-free organic triplet photosensitizers. Organic Letters, 14, 2594–2597.

    Article  CAS  PubMed  Google Scholar 

  16. Guldi, D. M., & Prato, M. (2000). Excited-state properties of C60 fullerene derivatives. Accounts of Chemical Research, 33, 695–703.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, D., Zhao, J., Wu, W., Yi, X., Yang, P., & Ma, J. (2012). Visible-light-harvesting triphenylamine ethynyl C60-BODIPY dyads as heavy-atom-free organic triplet photosensitizers for triplet-triplet annihilation upconversion. Asian Journal of Organic Chemistry, 1, 264–273.

    Article  CAS  Google Scholar 

  18. Loudet, A., & Burgess, K. (2007). BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chemical Reviews, 107, 4891–4932.

    Article  CAS  PubMed  Google Scholar 

  19. Lu, H., Mack, J., Yang, Y., & Shen, Z. (2014). Structural modification strategies for the rational design of red/NIR region BODIPYs. Chemical Society Reviews, 43, 4778–4823.

    Article  CAS  PubMed  Google Scholar 

  20. Zatsikha, Y. V., Swedin, R. K., Healy, A. T., Goff, P. C., Didukh, N. O., Blesener, T. S., et al. (2019). Synthesis, characterization, and electron-transfer properties of ferrocene-BODIPY-fullerene NIR absorbing triads: Are Catecholopyrrolidine-Linked Fullerenes a good architecture to facilitate electron-transfer? Chemistry–A European Journal, 25, 8401–8414.

    Article  CAS  PubMed  Google Scholar 

  21. Ziessel, R., Allen, B. D., Rewinska, D. B., & Harriman, A. (2009). Selective triplet-state formation during charge recombination in a fullerene/bodipy molecular dyad (Bodipy=Borondipyrromethene). Chemistry–A European Journal, 15, 7382–7393.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, W., Zhao, J., Sun, J., & Guo, S. (2012). Light-harvesting fullerene dyads as organic triplet photosensitizers for triplet-triplet annihilation upconversions. Journal of Organic Chemistry, 77, 5305–5312.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, L., Cui, X., Therrien, B., & Zhao, J. (2013). Energy-funneling-based broadband visible-light-absorbing bodipy–C60 triads and tetrads as dual functional heavy-atom-free organic triplet photosensitizers for photocatalytic organic reactions. Chemistry–A European Journal, 19, 17472–17482.

    Article  CAS  PubMed  Google Scholar 

  24. Obondi, C. O., Lim, G. N., Karr, P. A., Nesterov, V. N., & D’Souza, F. (2016). Photoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY–fullerene systems. Physical Chemistry Chemical Physics: PCCP, 18, 18187–18200.

    Article  CAS  PubMed  Google Scholar 

  25. Wei, Y., Wang, Y., Zhou, Q., Zhang, S., Zhang, B., Zhou, X., & Liu, S. (2020). Solvent effects on triplet–triplet annihilation upconversion kinetics of perylene with a Bodipy-phenyl-C60 photosensitizer. Physical Chemistry Chemical Physics: PCCP, 22, 26372–26382.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, P., Wu, W., Zhao, J., Huang, D., & Yi, X. (2012). Using C60-bodipy dyads that show strong absorption of visible light and long-lived triplet excited states as organic triplet photosensitizers for triplet–triplet annihilation upconversion. Journal of Materials Chemistry, 22, 20273–20283.

    Article  CAS  Google Scholar 

  27. Shao, S., Thomas, M. B., Park, K. H., Mahaffey, Z., Kim, D., & D’Souza, F. (2018). Sequential energy transfer followed by electron transfer in a BODIPY–bisstyryl BODIPY bound to C60 triad via a ‘two-point’ binding strategy. Chemical Communications, 54, 54–57.

    Article  CAS  Google Scholar 

  28. Rabah, J., Yonkeu, L., Wright, K., Vallée, A., Méallet-Renault, R., Ha-Thi, M.-H., Fatima, A., Clavier, G., Fensterbank, H., & Allard, E. (2021). Synthesis of a dual clickable fullerene platform and construction of a dissymmetric BODIPY-[60]Fullerene-DistyrylBODIPY triad. Tetrahedron, 100, 132467.

    Article  CAS  Google Scholar 

  29. Ghose, A., Rebarz, M., Maltsev, V., Hintermann, L., Ruckebusch, C., Fron, E., Hofkens, J., Mély, Y., Naumov, P., Sliwa, M., & Didier, P. (2015). Emission properties of oxyluciferin and its derivatives in water: Revealing the nature of the emissive species in firefly bioluminescence. The Journal of Physical Chemistry B, 119, 2638–2649.

    Article  CAS  PubMed  Google Scholar 

  30. Bonneau, R., Carmichael, I., & Hug, G. L. (1991). Molar absorption coefficients of transient species in solution. Pure and Applied Chemistry, 63, 289–300.

    Article  CAS  Google Scholar 

  31. Neumann, S., Kerzig, C., & Wenger, O. S. (2019). Quantitative insights into charge-separated states from one- and two-pulse laser experiments relevant for artificial photosynthesis. Chemical Science, 10, 5624–5633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Müller, P., & Brettel, K. (2012). [Ru(bpy)3]2+ as a reference in transient absorption spectroscopy: Differential absorption coefficients for formation of the long-lived 3MLCT excited state. Photochemical & Photobiological Sciences, 11, 632.

    Article  CAS  Google Scholar 

  33. Biczok, L., Linschitz, H., & Walter, R. I. (1992). Extinction coefficients of C60 triplet and anion radical, and one-electron reduction of the triplet by aromatic donors. Chemical Physics Letters, 195, 339–346.

    Article  CAS  Google Scholar 

  34. Bensasson, R. V., Bienvenüe, E., Fabre, C., Janot, J. M., Land, E. J., Leach, S., Leboulaire, V., Rassat, A., Roux, S., & Seta, P. (1998). Photophysical properties of three methanofullerene derivatives. Chemistry–A European Journal, 4, 270–278.

    Article  CAS  Google Scholar 

  35. Marfin, Y. S., Merkushev, D. A., Usoltsev, S. D., Shipalova, M. V., & Rumyantsev, E. V. (2015). Fluorescent properties of 8-substituted BODIPY dyes: Influence of solvent effects. Journal of Fluorescence, 25, 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  36. Chaudhuri, T., Mula, S., Chattopadhyay, S., & Banerjee, M. (2010). Photophysical properties of the 8-phenyl analogue of PM567: A theoretical rationalization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 739–744.

    Article  CAS  Google Scholar 

  37. Baffreau, J., Leroy-Lhez, S., Vân Anh, N., Williams, R. M., & Hudhomme, P. (2008). Fullerene C60–Perylene-3,4:9,10-bis(dicarboximide) light-harvesting dyads: Spacer-length and bay-substituent effects on intramolecular singlet and triplet energy transfer. Chemistry–A European Journal, 14, 4974–4992.

    Article  CAS  PubMed  Google Scholar 

  38. Tran, T.-T., Rabah, J., Ha-Thi, M.-H., Allard, E., Nizinski, S., Burdzinski, G., Aloïse, S., Fensterbank, H., Baczko, K., Nasrallah, H., Vallée, A., Clavier, G., Miomandre, F., Pino, T., & Méallet-Renault, R. (2020). Photoinduced electron transfer and energy transfer processes in a flexible BODIPY-C60 dyad. The Journal of Physical Chemistry B, 124, 9396–9410.

    Article  CAS  PubMed  Google Scholar 

  39. Guldi, D. M., González, S., Martín, N., Antón, A., Garín, J., & Orduna, J. (2000). Efficient charge separation in C 60-based dyads: Triazolino[4‘,5‘:1,2][60]fullerenes. Journal of Organic Chemistry, 65, 1978–1983.

    Article  CAS  PubMed  Google Scholar 

  40. Cui, X., Charaf-Eddin, A., Wang, J., Le Guennic, B., Zhao, J., & Jacquemin, D. (2014). Perylene-derived triplet acceptors with optimized excited state energy levels for triplet-triplet annihilation assisted upconversion. Journal of Organic Chemistry, 79, 2038–2048.

    Article  CAS  PubMed  Google Scholar 

  41. Ye, C., Gray, V., Mårtensson, J., & Börjesson, K. (2019). Annihilation versus excimer formation by the triplet pair in triplet-triplet annihilation photon upconversion. Journal of the American Chemical Society, 141, 9578–9584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt, T. W., & Castellano, F. N. (2014). Photochemical upconversion: The primacy of kinetics. Journal of Physical Chemistry Letters, 5, 4062–4072.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNRS (International Emerging Action, PICS project no 08198), the LabEx PALM ANR-10LABX-0039-PALM and CHARMMMAT ANR-11-LABX-0039, Région Ile-de-France DIM Nano-K. Anam Fatima is grateful for the MESRI grant (2019-2022). Jad Rabah thanks the MESRI for a PhD fellowship (2017-2020).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AF, RMR, MH, TP; investigation: AF, JR, EA, HF, KW, GB, GC and MS; supervision: TP, RMR, KS and MH; writing—original draft preparation: AF, KS and MH; funding acquisition: MH, RMR and TP. All authors have read and agreed to the submitted version of the manuscript.

Corresponding authors

Correspondence to Emmanuel Allard, Rachel Méallet-Renault, Karine Steenkeste or Minh-Huong Ha-Thi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24658 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, A., Rabah, J., Allard, E. et al. Selective population of triplet excited states in heavy-atom-free BODIPY-C60 based molecular assemblies. Photochem Photobiol Sci 21, 1573–1584 (2022). https://doi.org/10.1007/s43630-022-00241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00241-z

Keywords

Navigation