Skip to main content
Log in

The complex photochemistry of coumarin-3-carboxylic acid in acetonitrile and methanol

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Irradiation of coumarin-3-carboxylic acid in acetonitrile and methanol solutions at 355 nm results in complex multistep photochemical transformations, strongly dependent on the solvent properties and oxygen content. A number of reaction intermediates, which themselves undergo further (photo)chemical reactions, were identified by steady-state and transient absorption spectroscopy, mass spectrometry, and NMR and product analyses. The triplet excited compound in acetonitrile undergoes decarboxylation to give a 3-coumarinyl radical that traps molecular oxygen to form 3-hydroxycoumarin as the major but chemically reactive intermediate. This compound is oxygenated by singlet oxygen, produced by coumarin-3-carboxylic acid sensitization, followed by a pyrone ring-opening reaction to give an oxalic acid derivative. The subsequent steps lead to the production of salicylaldehyde, carbon monoxide, and carbon dioxide as the final products. When 3-coumarinyl radical is not trapped by oxygen in degassed acetonitrile, it abstracts hydrogen from the solvent and undergoes triplet-sensitized [2 + 2] cycloaddition. The reaction of 3-coumarinyl radical with oxygen is largely suppressed in aerated methanol as a better H-atom donor, and coumarin is obtained as the primary product in good yields. Because coumarin derivatives are used in many photophysical and photochemical applications, this work provides detailed and sometimes surprising insights into their complex phototransformations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Emami, S., & Dadashpour, S. (2015). Current developments of coumarin-based anti-cancer agents in medicinal chemistry. European Journal of Medicinal Chemistry, 102, 611–630. https://doi.org/10.1016/j.ejmech.2015.08.033

    Article  CAS  PubMed  Google Scholar 

  2. Al-Majedy, Y., Al-Amiery, A., Kadhum, A. A., & BakarMohamad, A. (2017). Antioxidant activity of coumarins. Systematic Reviews in Pharmacy, 8(1), 24. https://doi.org/10.5530/srp.2017.1.6

    Article  CAS  Google Scholar 

  3. Matos, M. J., Vazquez-Rodriguez, S., Fonseca, A., Uriarte, E., Santana, L., & Borges, F. (2017). Heterocyclic antioxidants in nature: Coumarins. Current Organic Chemistry, 21(4), 311–324. https://doi.org/10.2174/1385272820666161017170652

    Article  CAS  Google Scholar 

  4. Grover, J., & Jachak, S. M. (2015). Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Advances, 5(49), 38892–38905. https://doi.org/10.1039/C5RA05643H

    Article  CAS  Google Scholar 

  5. Hassan, M. Z., Osman, H., Ali, M. A., & Ahsan, M. J. (2016). Therapeutic potential of coumarins as antiviral agents. European Journal of Medicinal Chemistry, 123, 236–255. https://doi.org/10.1016/j.ejmech.2016.07.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peng, X.-M., Damu, G. L. V., & Zhou, H. (2013). Current developments of coumarin compounds in medicinal chemistry. Current Pharmaceutical Design, 19(21), 3884–3930. https://doi.org/10.2174/1381612811319210013

    Article  CAS  PubMed  Google Scholar 

  7. Dorlars, A., Schellhammer, C. W., & Schroeder, J. (1975). Heterocycles as structural units in new optical brighteners. Angewandte Chemie International Edition, 14(10), 665–679. https://doi.org/10.1002/anie.197506651

    Article  Google Scholar 

  8. Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S., & Lin, W. (2019). Coumarin-based small-molecule fluorescent chemosensors. Chemical Reviews, 119(18), 10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145

    Article  CAS  PubMed  Google Scholar 

  9. Perkin, W. (1868). VI.—On the artificial production of coumarin and formation of its homologues. Journal of the Chemical Society, 21, 53–63. https://doi.org/10.1039/JS8682100053

    Article  Google Scholar 

  10. Bogdał, D. (1998). Coumarins: Fast synthesis by Knoevenagel condensation under microwave irradiation. Journal of Chemical Research, Synopses. https://doi.org/10.1039/A801724G

    Article  Google Scholar 

  11. Kuznetsova, ΝA., & Kaliya, ΟL. (1992). The photochemistry of coumarins. Russian Chemical Reviews, 61(7), 683–696. https://doi.org/10.1070/RC1992v061n07ABEH000992

    Article  Google Scholar 

  12. D’Auria, M., & Racioppi, R. (2004). The photodimerisation of coumarin. Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 557–559. https://doi.org/10.1016/j.jphotochem.2004.02.012

    Article  CAS  Google Scholar 

  13. Anet, R. (1962). The photodimers of coumarin and related compounds. Canadian Journal of Chemistry, 40(7), 1249–1257. https://doi.org/10.1139/v62-193

    Article  CAS  Google Scholar 

  14. Hammond, G. S., Stout, C. A., & Lamola, A. A. (1964). Mechanisms of photochemical reactions in solution. XXV. The photodimerization of coumarin. Journal of the American Chemical Society, 86(15), 3103–3106. https://doi.org/10.1021/ja01069a026

    Article  CAS  Google Scholar 

  15. Yu, X., Scheller, D., Rademacher, O., & Wolff, T. (2003). Selectivity in the photodimerization of 6-alkylcoumarins. The Journal of Organic Chemistry, 68(19), 7386–7399. https://doi.org/10.1021/jo034627m

    Article  CAS  PubMed  Google Scholar 

  16. Mustafa, A., Kamel, M., & Allam, M. A. (1957). Dimerization reactions in sunlight. V. 1 Photodimerization of substituted coumarins. The Journal of Organic Chemistry, 22(8), 888–891. https://doi.org/10.1021/jo01359a008

    Article  CAS  Google Scholar 

  17. Belfield, K. D., Bondar, M. V., Liu, Y., & Przhonska, O. V. (2003). Photophysical and photochemical properties of 5, 7-dimethoxycoumarin under one-and two-photon excitation. Journal of Physical Organic Chemistry, 16(1), 69–78. https://doi.org/10.1002/poc.576

    Article  CAS  Google Scholar 

  18. Brahmachari, G., & Karmakar, I. (2020). Visible light-induced and singlet oxygen-mediated photochemical conversion of 4-hydroxy-α-benzopyrones to 2-hydroxy-3-oxo-2, 3-dihydrobenzofuran-2-carboxamides/carboxylates using rose bengal as a photosensitizer. The Journal of Organic Chemistry, 85(14), 8851–8864. https://doi.org/10.1021/acs.joc.0c00726

    Article  CAS  PubMed  Google Scholar 

  19. Náfrádi, M., Farkas, L., Alapi, T., Hernádi, K., Kovács, K., Wojnárovits, L., & Takács, E. (2020). Application of coumarin and coumarin-3-carboxylic acid for the determination of hydroxyl radicals during different advanced oxidation processes. Radiation Physics and Chemistry, 170, 108610. https://doi.org/10.1016/j.radphyschem.2019.108610

    Article  CAS  Google Scholar 

  20. Manevich, Y., Held, K. D., & Biaglow, J. E. (1997). Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiation Research, 148(6), 580–591. https://doi.org/10.2307/3579734

    Article  CAS  PubMed  Google Scholar 

  21. Sjöstrand, T. (1949). Endogenous formation of carbon monoxide in man. Nature, 164(4170), 580–581. https://doi.org/10.1038/164580a0

    Article  PubMed  Google Scholar 

  22. Motterlini, R., & Otterbein, L. E. (2010). The therapeutic potential of carbon monoxide. Nature Reviews Drug Discovery, 9(9), 728–743. https://doi.org/10.1038/nrd3228

    Article  CAS  PubMed  Google Scholar 

  23. Romao, C. C., Blattler, W. A., Seixas, J. D., & Bernardes, G. J. (2012). Developing drug molecules for therapy with carbon monoxide. Chemical Society Reviews, 41(9), 3571–3583. https://doi.org/10.1039/C2CS15317C

    Article  CAS  PubMed  Google Scholar 

  24. Heinemann, S. H., Hoshi, T., Westerhausen, M., & Schiller, A. (2014). Carbon monoxide–physiology, detection and controlled release. Chemical Communications, 50(28), 3644–3660. https://doi.org/10.1039/C3CC49196J

    Article  CAS  PubMed  Google Scholar 

  25. Martinek, M., Filipova, L., Galeta, J., Ludvikova, L., & Klan, P. (2016). Photochemical formation of dibenzosilacyclohept-4-yne for Cu-free click chemistry with azides and 1,2,4,5-tetrazines. Organic Letters, 18(19), 4892–4895. https://doi.org/10.1021/acs.orglett.6b02367

    Article  CAS  PubMed  Google Scholar 

  26. Russo, M., Štacko, P., Nachtigallová, D., & Klán, P. (2020). Mechanisms of orthogonal photodecarbonylation reactions of 3-hydroxyflavone-based acid–base forms. The Journal of Organic Chemistry, 85(5), 3527–3537. https://doi.org/10.1021/acs.joc.9b03248

    Article  CAS  PubMed  Google Scholar 

  27. Palao, E., Slanina, T. S., Muchová, L., Solomek, T., Vítek, L., & Klán, P. (2016). Transition-metal-free CO-releasing BODIPY derivatives activatable by visible to NIR light as promising bioactive molecules. Journal of the American Chemical Society, 138(1), 126–133. https://doi.org/10.1021/jacs.5b10800

    Article  CAS  PubMed  Google Scholar 

  28. Kottelat, E., & Fabio, Z. (2017). Visible light-activated photoCORMs. Inorganics, 5(2), 24. https://doi.org/10.3390/inorganics5020024

    Article  CAS  Google Scholar 

  29. Antony, L. A. P., Slanina, T. S., Šebej, P., Solomek, T., & Klán, P. (2013). Fluorescein analogue xanthene-9-carboxylic acid: A transition-metal-free CO releasing molecule activated by green light. Organic Letters, 15(17), 4552–4555. https://doi.org/10.1021/ol4021089

    Article  CAS  PubMed  Google Scholar 

  30. Krauter, C. M., Mohring, J., Buckup, T., Pernpointner, M., & Motzkus, M. (2013). Ultrafast branching in the excited state of coumarin and umbelliferone. Physical Chemistry Chemical Physics, 15(41), 17846–17861. https://doi.org/10.1039/C3CP52719K

    Article  CAS  PubMed  Google Scholar 

  31. Kirkiacharian, B. S., Santus, R., & Helene, C. (1972). The phosphorescent triplet state of some hydroxycoumarins. Photochemistry and Photobiology, 16(5), 455–458. https://doi.org/10.1111/j.1751-1097.1972.tb06313.x

    Article  CAS  PubMed  Google Scholar 

  32. Specht, D. P., Martic, P. A., & Farid, S. (1982). Ketocoumarins: A new class of triplet sensitizers. Tetrahedron, 38(9), 1203–1211. https://doi.org/10.1016/0040-4020(82)85104-1

    Article  CAS  Google Scholar 

  33. Polyansky, D. E., & Neckers, D. C. (2005). Photodecomposition of Organic Peroxides Containing Coumarin Chromophore: Spectroscopic Studies. The Journal of Physical Chemistry A, 109(12), 2793–2800. https://doi.org/10.1021/jp044554q

    Article  CAS  PubMed  Google Scholar 

  34. Kawata, H., Ichikawa, S., Kumagai, T., & Niizuma, S. (2002). A new type of photodimerization reaction for coumarin derivatives. Tetrahedron Letters, 43(29), 5161–5163. https://doi.org/10.1016/S0040-4039(02)00969-3

    Article  CAS  Google Scholar 

  35. Darmanyan, A. P., & Foote, C. S. (1993). Solvent effects on singlet oxygen yield from n, π* and π, π* triplet carbonyl compounds. Journal of Physical Chemistry, 97(19), 5032–5035. https://doi.org/10.1021/j100121a029

    Article  CAS  Google Scholar 

  36. Reinhard, S., & Ebrahim, A. (1990). Effect of solvent on the phosphorescence rate constant of singlet molecular oxygen. Journal of Physical Chemistry, 94(10), 4377–4378. https://doi.org/10.1021/j100373a096

    Article  Google Scholar 

  37. Epelde-Elezcano, N., Martínez-Martínez, V., Peña-Cabrera, E., Gómez-Durán, C. F. A., Arbeloa, I. L., & Lacombe, S. (2016). Modulation of singlet oxygen generation in halogenated BODIPY dyes by substitution at their meso position: Towards a solvent-independent standard in the vis region. RSC Advances, 6(48), 41991–41998. https://doi.org/10.1039/C6RA05820E

    Article  CAS  Google Scholar 

  38. Wolfbeis, O. S. (1981). Solvent and acidity dependence of the absorption and fluorescence spectra of 3-hydroxycoumarin. Zeitschrift für Physikalische Chemie, 125(1), 15–20. https://doi.org/10.1524/zpch.1981.125.1.015

    Article  CAS  Google Scholar 

  39. Tauer, E., & Grellmann, K.-H. (1986). Photochemische Reaktionen von 3-Phenyl-2H-1,4-benzoxazin-2-on und von verwandten Verbindungen im Singulett- und Triplett-Zustand. Chemische Berichte, 119(1), 215–228. https://doi.org/10.1002/cber.19861190120

    Article  CAS  Google Scholar 

  40. Bayrakceken, F. (2008). Triplet-triplet optical energy transfer from benzophenone to naphthalene in the vapor phase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(2), 603–608. https://doi.org/10.1016/j.saa.2007.12.045

    Article  CAS  Google Scholar 

  41. Ronzani, F., Arzoumanian, E., Blanc, S., Bordat, P., Pigot, T., Cugnet, C., Oliveros, E., Sarakha, M., Richard, C., & Lacombe, S. (2013). Efficient cyanoaromatic photosensitizers for singlet oxygen production: Synthesis and characterization of the transient reactive species. Physical Chemistry Chemical Physics, 15(40), 17219–17232. https://doi.org/10.1039/C3CP52168K

    Article  CAS  PubMed  Google Scholar 

  42. Olea, A. F., Worrall, D. R., Wilkinson, F., Williams, S. L., & Abdel-Shafi, A. A. (2002). Solvent effects on the photophysical properties of 9,10-dicyanoanthracene. Physical Chemistry Chemical Physics, 4(2), 161–167. https://doi.org/10.1039/B104806F

    Article  CAS  Google Scholar 

  43. Kikuchi, K., Sato, C., Watabe, M., Ikeda, H., Takahashi, Y., & Miyashi, T. (1993). New aspects of fluorescence quenching by molecular oxygen. Journal of the American Chemical Society, 115(12), 5180–5184. https://doi.org/10.1021/ja00065a033

    Article  CAS  Google Scholar 

  44. García, N. A. (1994). New trends in photobiology: Singlet-molecular-oxygen-mediated photodegradation of aquatic phenolic pollutants. A kinetic and mechanistic overview. Journal of Photochemistry and Photobiology B: Biology, 22(3), 185–196. https://doi.org/10.1016/1011-1344(93)06932-S

    Article  Google Scholar 

  45. Mártire, D. O., Braslavsky, S. E., & García, N. A. (1991). Sensitized photo-oxidation of dihydroxybenzenes and chlorinated derivatives. A kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 61(1), 113–124. https://doi.org/10.1016/1010-6030(91)85079-V

    Article  Google Scholar 

  46. Nowak, P. M., Sagan, F., & Mitoraj, M. P. (2017). Origin of remarkably different acidity of hydroxycoumarins-joint experimental and theoretical studies. The Journal of Physical Chemistry B, 121(17), 4554–4561. https://doi.org/10.1021/acs.jpcb.7b01849

    Article  CAS  PubMed  Google Scholar 

  47. Kaljurand, I., Kütt, A., Sooväli, L., Rodima, T., Mäemets, V., Leito, I., & Koppel, I. A. (2005). Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: Unification of different basicity scales. The Journal of Organic Chemistry, 70(3), 1019–1028. https://doi.org/10.1021/jo048252w

    Article  CAS  PubMed  Google Scholar 

  48. Chattopadhyay, S. K., Kumar, C. V., & Das, P. K. (1985). Substituent effects in the quenching of acetophenone and benzophenone triplets by oxygen and the di-tert-butylnitroxy radical, and the efficiency of singlet oxygen photogeneration. Journal of Photochemistry, 30(1), 81–91. https://doi.org/10.1016/0047-2670(85)87007-6

    Article  CAS  Google Scholar 

  49. Nawrat, C. C., Jamison, C. R., Slutskyy, Y., MacMillan, D. W. C., & Overman, L. E. (2015). Oxalates as activating groups for alcohols in visible light photoredox catalysis: Formation of quaternary centers by redox-neutral fragment coupling. Journal of the American Chemical Society, 137(35), 11270–11273. https://doi.org/10.1021/jacs.5b07678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan, N.-D., Yuan, Y., Yin, J.-H., & Xu, N. (2017). Quenching of salicylaldehyde-based luminescence probe via Dakin reaction: approach for highly selective detection of hydrogen peroxide. Bulletin of the Korean Chemical Society, 38(8), 875–879. https://doi.org/10.1002/bkcs.11190

    Article  CAS  Google Scholar 

  51. Epling, G. A., & Lopes, A. (1977). Fragmentation pathways in the photolysis of phenylacetic acid. Journal of the American Chemical Society, 99(8), 2700–2704. https://doi.org/10.1021/ja00450a050

    Article  CAS  Google Scholar 

  52. Wan, P., & Budac, D. (1995). Photodecarboxylation of acids and lactones. In W. M. Horspool & P.-S. Song (Eds.), CRC handbook of organic photochemistry and photobiology (pp. 384–392). Boca Raton: CRC Press Inc.

    Google Scholar 

  53. Asiedu, A., & Kumar, S. (2019). Kinetics and optimization of catalytic transfer hydrogenation of WCO using 2-propanol as a hydrogen donor over NiOx–MoOx–CoOx/zeolite. Industrial & Engineering Chemistry Research, 58(35), 15787–15802. https://doi.org/10.1021/acs.iecr.9b00648

    Article  CAS  Google Scholar 

  54. Naguib, Y. M., Steel, C., Cohen, S. G., & Young, M. A. (1987). Photoreduction of benzophenone by acetonitrile: Correlation of rates of hydrogen abstraction from RH with the ionization potentials of the radicals R. Journal of Physical Chemistry, 91(11), 3033–3036. https://doi.org/10.1021/j100295a078

    Article  CAS  Google Scholar 

  55. Chu, X.-Q., Ge, D., Shen, Z.-L., & Loh, T.-P. (2018). Recent advances in radical-initiated C (sp3)–H bond oxidative functionalization of alkyl nitriles. ACS Catalysis, 8(1), 258–271. https://doi.org/10.1021/acscatal.7b03334

    Article  CAS  Google Scholar 

  56. Gordeeva, N., Kirpichenok, M., Yufit, D., Struchkov, Y. T., & Grandberg, I. (1990). Photochemical reactions of 7-aminocoumarins. 7. Reaction of 3-iodo-4-methyl-7-diethylcoumarin with olefins. Chemistry of Heterocyclic Compounds, 26(8), 863–869. https://doi.org/10.1007/BF00480857

    Article  Google Scholar 

  57. Bach, R. D., Ayala, P. Y., & Schlegel, H. (1996). A reassessment of the bond dissociation energies of peroxides. An ab initio study. Journal of the American Chemical Society, 118(50), 12758–12765. https://doi.org/10.1021/ja961838i

    Article  CAS  Google Scholar 

  58. Kawata, H., Kumagai, T., Morita, T., & Niizuma, S. (2001). Photodecarboxylation of chromone-2-carboxylic acid in aerated and deaerated ethanol solution. Journal of Photochemistry and Photobiology A: Chemistry, 138(3), 281–287. https://doi.org/10.1016/S1010-6030(00)00367-1

    Article  CAS  Google Scholar 

  59. Xu, L., & Porter, N. A. (2014). Reactivities and products of free radical oxidation of cholestadienols. Journal of the American Chemical Society, 136(14), 5443–5450. https://doi.org/10.1021/ja5011674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vanoye, L., Wang, J., Pablos, M., de Bellefon, C., & Favre-Réguillon, A. (2016). Epoxidation using molecular oxygen in flow: Facts and questions on the mechanism of the Mukaiyama epoxidation. Catalysis Science & Technology, 6(13), 4724–4732. https://doi.org/10.1039/C6CY00309E

    Article  CAS  Google Scholar 

  61. Mahamat Ahmat, Y., Madadi, S., Charbonneau, L., & Kaliaguine, S. (2021). Epoxidation of terpenes. Catalysts, 11(7), 847–864. https://doi.org/10.3390/catal11070847

    Article  CAS  Google Scholar 

  62. Lake, B. G., Evans, J. G., Chapuis, F., Walters, D. G., & Price, R. J. (2002). Studies on the disposition, metabolism and hepatotoxicityof coumarin in the rat and Syrian hamster. Food and Chemical Toxicology, 40, 809–823. https://doi.org/10.1016/S0278-6915(02)00036-4

    Article  CAS  PubMed  Google Scholar 

  63. Luz, I., León, A., Boronat, M., i Xamena, F. L., & Corma, A. (2013). Selective aerobic oxidation of activated alkanes with MOFs and their use for epoxidation of olefins with oxygen in a tandem reaction. Catalysis Science & Technology, 3(2), 371–379. https://doi.org/10.1039/C2CY20449E

    Article  CAS  Google Scholar 

  64. Kelly, D. P., & Pinhey, J. T. (1964). The photochemical rearrangement of phenoxyacetic acids. Tetrahedron Letters, 5(46), 3427–3429. https://doi.org/10.1016/S0040-4039(01)89405-3

    Article  Google Scholar 

  65. Slanina, T., Shrestha, P., Palao, E., Kand, D., Peterson, J. A., Dutton, A. S., Rubinstein, N., Weinstain, R., Winter, A. H., & Klán, P. (2017). In search of the perfect photocage: structure-reactivity relationships in meso-methyl BODIPY photoremovable protecting groups. Journal of the American Chemical Society, 139(42), 15168–15175. https://doi.org/10.1021/jacs.7b08532

    Article  CAS  PubMed  Google Scholar 

  66. Marek-Urban, P. H., Urban, M., Wiklinska, M., Paplinska, K., Wozniak, K., Blacha-Grzechnik, A., & Durka, K. (2021). Heavy-atom free spiro organoboron complexes as triplet excited states photosensitizers for singlet oxygen activation. The Journal of Organic Chemistry, 86(18), 12714–12722. https://doi.org/10.1021/acs.joc.1c01254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Charles, T., & Christian, W. (1995). Determination of the parameters controlling singlet oxygen production via oxygen and heavy-atom enhancement of triplet yields. Journal of Physical Chemistry, 99(24), 9831–9837. https://doi.org/10.1021/j100024a026

    Article  Google Scholar 

  68. Fenical, W. H., Kearns, D. R., & Radlick, P. (1969). Mechanism of the addition of 1∆g excited oxygen to olefins. Evidence for a 1,2-dioxetane intermediate. Journal of the American Chemical Society, 91(12), 3396–3398. https://doi.org/10.1021/ja01040a066

    Article  CAS  Google Scholar 

  69. Kearns, D. R. (1969). Selection rules for singlet-oxygen reactions. Concerted addition reactions. Journal of the American Chemical Society, 91(24), 6554–6563. https://doi.org/10.1021/ja01052a003

    Article  CAS  Google Scholar 

  70. Kearns, D. R. (1971). Physical and chemical properties of singlet molecular oxygen. Chemical Reviews, 71(4), 395–427. https://doi.org/10.1021/cr60272a004

    Article  CAS  Google Scholar 

  71. La Cruz, L. K., & Caestecker, M. (2021). Adapting decarbonylation chemistry for the development of prodrugs capable of in vivo delivery of carbon monoxide utilizing sweeteners as carrier molecules. Chemical Science, 12(31), 10649–10654. https://doi.org/10.1039/D1SC02711E

    Article  Google Scholar 

  72. Dong, J.-L., Yu, L.-S.-H., & Xie, J.-W. (2018). A simple and versatile method for the formation of acetals/ketals using trace conventional acids. ACS Omega, 3(5), 4974–4985. https://doi.org/10.1021/acsomega.8b00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Daw, G., Regan, A. C., Watt, C. I. F., & Wood, E. (2013). Steric effects and mechanism in the formation of hemi-acetals from aliphatic aldehydes. Journal of Physical Organic Chemistry, 26(12), 1048–1057. https://doi.org/10.1002/poc.3138

    Article  CAS  Google Scholar 

  74. Hajimohammadi, M., Safari, N., Mofakham, H., & Shaabani, A. (2010). A new and efficient aerobic oxidation of aldehydes to carboxylic acids with singlet oxygen in the presence of porphyrin sensitizers and visible light. Tetrahedron Letters, 51(31), 4061–4065. https://doi.org/10.1016/j.tetlet.2010.05.124

    Article  CAS  Google Scholar 

  75. Al-Nu’airat, J., Dlugogorski, B. Z., Gao, X., Zeinali, N., Skut, J., Westmoreland, P. R., Oluwoye, I., & Altarawneh, M. (2018). Reaction of phenol with singlet oxygen. Physical Chemistry Chemical Physics, 21(1), 171–183. https://doi.org/10.1039/C8CP04852E

    Article  PubMed  Google Scholar 

  76. Belluti, F., Uliassi, E., Veronesi, G., Bergamini, C., Kaiser, M., Brun, R., Viola, A., Fato, R., Michels, P. A., Krauth-Siegel, R. L., Cavalli, A., & Bolognesi, M. L. (2014). Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi. ChemMedChem, 9(2), 371–382. https://doi.org/10.1002/cmdc.201300399

    Article  CAS  PubMed  Google Scholar 

  77. Kalgutkar, A. S., Kozak, K. R., Crews, B. C., Hochgesang, G. P., & Marnett, L. J. (1998). Covalent modification of cyclooxygenase-2 (COX-2) by 2-acetoxyphenyl alkyl sulfides, a new class of selective COX-2 inactivators. Journal of Medicinal Chemistry, 41(24), 4800–4818. https://doi.org/10.1021/jm980303s

    Article  CAS  PubMed  Google Scholar 

  78. Ma, Y., Luo, W., Quinn, P. J., Liu, Z., & Hider, R. C. (2004). Design, synthesis, physicochemical properties, and evaluation of novel iron chelators with fluorescent sensors. Journal of Medicinal Chemistry, 47(25), 6349–6362. https://doi.org/10.1021/jm049751s

    Article  CAS  PubMed  Google Scholar 

  79. Stackova, L., Muchova, E., Russo, M., Slavicek, P., Stacko, P., & Klan, P. (2020). Deciphering the structure-property relations in substituted heptamethine cyanines. The Journal of Organic Chemistry, 85(15), 9776–9790. https://doi.org/10.1021/acs.joc.0c01104

    Article  CAS  PubMed  Google Scholar 

  80. Germán Günther, S., Else Lemp, M., & Zanocco, A. L. (2002). Determination of chemical rate constants in singlet molecular oxygen reactions by using 1,4-dimethylnaphthalene endoperoxide. Journal of Photochemistry and Photobiology A: Chemistry, 151(1–3), 1–5. https://doi.org/10.1016/S1010-6030(02)00175-2

    Article  Google Scholar 

  81. Madea, D., Mahvidi, S., Chalupa, D., Mujawar, T., Dvořák, A., Muchová, L., Janoš, J. I., Slavicek, P., Švenda, J., & Vítek, L. (2020). Wavelength-dependent photochemistry and biological relevance of a bilirubin dipyrrinone subunit. The Journal of Organic Chemistry, 85(20), 13015–13028. https://doi.org/10.1021/acs.joc.0c01673

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the Czech Science Foundation (GA21-01799S). We thank the RECETOX Research Infrastructure (No. LM2018121) financed by the Ministry of Education, Youth and Sports, and the Operational Programme Research, Development and Education (the CETOCOEN EXCELLENCE project No. CZ.02.1.01/0.0/0.0/17_043/0009632) for supportive background. This project was also supported by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 857560. This publication reflects only the authors' view, and the European Commission is not responsible for any use that may be made of the information it contains. We thank Luboš Jílek and Marek Martínek for their help with experiments and use of the instrumentation, Chitose Youhei for his help with transient spectroscopy experiments, and Miroslava Bittová (all Masaryk University) for HRMS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Klán.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Dedicated to Prof. Jakob Wirz on the occasion of his 80th birthday.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1764 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Váňa, J. & Klán, P. The complex photochemistry of coumarin-3-carboxylic acid in acetonitrile and methanol. Photochem Photobiol Sci 21, 1481–1495 (2022). https://doi.org/10.1007/s43630-022-00238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00238-8

Keywords

Navigation