Skip to main content
Log in

Evaluation of the Angle Between the Long Axis of the Femoral Anterior Cruciate Ligament Footprint and Bony Morphology of the Knee: A Cadaveric Descriptive Study

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

There have been numerous studies of the anterior cruciate ligament (ACL) anatomy, but few have focused on the long axis angle of the femoral ACL footprint. This study investigated the angle between the long axis of the femoral ACL footprint and the bony morphology of the knee.

Methods

This study is a cadaveric descriptive study. Thirty non-paired formalin-fixed knees of Japanese cadavers were used. Anteromedial (AM) and posterolateral (PL) bundles were identified according to the tension pattern differences during the complete range of motion of the knee. In the ACL femoral footprint, there is a fold between the mid-substance insertion site and fan-like extension fibers. After identifying AM and PL bundles of mid-substance fibers, the mid-substance and fan-like extension fibers were divided into those bundles and stained. We defined the line passing through the center of the AM and PL bundles as the long axis of the ACL. The center points of each of the four areas and the angle between the long axis of the ACL and the bony morphology of the knee were calculated using Image J software.

Results

The mean angle between the axis of the femoral shaft and the long axis of the ACL mid-substance insertion was 28.8 ± 12.2 degrees. The mean angle between the Blumensaat line and the long axis of the mid-substance was 54.2 ± 13.5 degrees.

Conclusion

The mean angle between the axis of the femoral shaft and the long axis of the femoral ACL footprint was approximately 29 degrees. There is a wide variation in the long axis of the femoral ACL footprint. To achieve better clinical results through a more anatomically accurate reconstruction, it can be beneficial to replicate the ACL femoral footprint along its native long axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Inclusion of data is available in this study.

References

  1. Yasuda, K., Kondo, E., Ichiyama, H., Tanabe, Y., & Tohyama, H. (2006). Clinical evaluation of anatomic double-bundle anterior cruciate ligament reconstruction procedure using hamstring tendon grafts: Comparisons among 3 different procedures. Arthroscopy, 22, 240–251. https://doi.org/10.1016/j.arthro.2005.12.017

    Article  PubMed  Google Scholar 

  2. Girgis, F. G., Marshall, J. L., & Monajem, A. (1975). The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clinical Orthopaedics and Related Research, 106, 216–231. https://doi.org/10.1097/00003086-197501000-00033

    Article  Google Scholar 

  3. Takahashi, M., Doi, M., Abe, M., Suzuki, D., & Nagano, A. (2006). Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. American Journal of Sports Medicine, 34, 787–792. https://doi.org/10.1177/0363546505282625

    Article  PubMed  Google Scholar 

  4. Muneta, T., Sekiya, I., Yagishita, K., Ogiuchi, T., Yamamoto, H., & Shinomiya, K. (1999). Two-bundle reconstruction of the anterior cruciate ligament using semitendinosus tendon with endobuttons: Operative technique and preliminary results. Arthroscopy, 15, 618–624. https://doi.org/10.1053/ar.1999.v15.0150611

    Article  CAS  PubMed  Google Scholar 

  5. Shino, K., Nakata, K., Nakamura, N., Toritsuka, Y., Horibe, S., Nakagawa, S., & Suzuki, T. (2008). Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy, 24, 1178–1183. https://doi.org/10.1016/j.arthro.2008.06.010

    Article  PubMed  Google Scholar 

  6. Mochizuki, T., Fujishiro, H., Nimura, A., Mahakkanukrauh, P., Yasuda, K., Muneta, T., & Akita, K. (2014). Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surgery, Sports Traumatology, Arthroscopy, 22, 336–344. https://doi.org/10.1007/s00167-013-2404-4

    Article  PubMed  Google Scholar 

  7. Suruga, M., Horaguchi, T., Iriuchishima, T., Yahagi, Y., Iwama, G., Tokuhashi, Y., & Aizawa, S. (2017). Morphological size evaluation of the mid-substance insertion areas and the fan-like extension fibers in the femoral ACL footprint. Archives of Orthopaedic and Trauma Surgery, 137, 1107–1113. https://doi.org/10.1007/s00402-017-2726-7

    Article  PubMed  Google Scholar 

  8. Iriuchishima, T., Yorifuji, H., Aizawa, S., Tajika, Y., Murakami, T., & Fu, F. H. (2014). Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surgery, Sports Traumatology, Arthroscopy, 22, 207–213. https://doi.org/10.1007/s00167-012-2356-0

    Article  PubMed  Google Scholar 

  9. Okada, E., Matsumoto, M., Ichihara, D., et al. (2011). Cross-sectional area of posterior extensor muscles of the cervical spine in asymptomatic subjects: A 10-year longitudinal magnetic resonance imaging study. European Spine Journal, 20, 1567–1573. https://doi.org/10.1007/s00586-011-1774-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Iriuchishima, T., Ryu, K., Aizawa, S., & Fu, F. H. (2016). Blumensaat’s line is not always straight: Morphological variations of the lateral wall of the femoral intercondylar notch. Knee Surgery, Sports Traumatology, Arthroscopy, 24, 2752–2757. https://doi.org/10.1007/s00167-015-3579-7

    Article  PubMed  Google Scholar 

  11. Suruga, M., Horaguchi, T., Iriuchishima, T., Iwama, G., Yahagi, Y., Tokuhashi, Y., & Aizawa, S. (2019). The correlation between the femoral anterior cruciate ligament footprint area and the morphology of the distal femur: Three-dimensional CT evaluation in cadaveric knees. European Journal of Orthopaedic Surgery & Traumatology, 29, 849–854. https://doi.org/10.1007/s00590-019-02387-6

    Article  Google Scholar 

  12. van Eck, C. F., Samuelsson, K., Vyas, S. M., van Dijk, C. N., Karlsson, J., & Fu, F. H. (2011). Systematic review on cadaveric studies of anatomic anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 19(Suppl 1), S101–S108. https://doi.org/10.1007/s00167-011-1544-7

    Article  PubMed  Google Scholar 

  13. van Eck, C. F., Schreiber, V. M., Mejia, H. A., Samuelsson, K., van Dijk, C. N., Karlsson, J., & Fu, F. H. (2010). ‘Anatomical’ anterior cruciate ligament reconstruction: a systematic review of surgical techniques and reporting of surgical data. Arthroscopy, 26(9), S2-12. https://doi.org/10.1016/j.arthro.2010.03.005

    Article  PubMed  Google Scholar 

  14. Ferretti, M., Ekdahl, M., Shen, W., & Fu, F. H. (2007). Osseous landmarks of the femoral attachment of the anterior cruciate ligament: An anatomic study. Arthroscopy, 23, 1218–1225. https://doi.org/10.1016/j.arthro.2007.09.008

    Article  PubMed  Google Scholar 

  15. Hara, K., Mochizuki, T., Sekiya, I., Yamaguchi, K., Akita, K., & Muneta, T. (2009). Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles. American Journal of Sports Medicine, 37, 2386–2391. https://doi.org/10.1177/0363546509340404

    Article  PubMed  Google Scholar 

  16. Iriuchishima, T., Ingham, S. J., Tajima, G., et al. (2010). Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: A cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy, 18, 1226–1231. https://doi.org/10.1007/s00167-010-1128-y

    Article  PubMed  Google Scholar 

  17. Kawaguchi, Y., Kondo, E., Takeda, R., Akita, K., Yasuda, K., & Amis, A. A. (2015). The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy, 31, 435–444. https://doi.org/10.1016/j.arthro.2014.08.033

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mochizuki, T., Muneta, T., Nagase, T., Shirasawa, S., Akita, K. I., & Sekiya, I. (2006). Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anterior cruciate ligament reconstruction. Arthroscopy, 22, 356–361. https://doi.org/10.1016/j.arthro.2005.09.020

    Article  PubMed  Google Scholar 

  19. Yagi, M., Wong, E. K., Kanamori, A., Debski, R. E., Fu, F. H., & Woo, S. L. (2002). Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. American Journal of Sports Medicine, 30, 660–666. https://doi.org/10.1177/03635465020300050501

    Article  PubMed  Google Scholar 

  20. Fu, F. H. (2011). Double-bundle ACL reconstruction. Orthopedics, 34, 281–283. https://doi.org/10.3928/01477447-20110228-15

    Article  PubMed  Google Scholar 

  21. Iwahashi, T., Shino, K., Nakata, K., Otsubo, H., Suzuki, T., Amano, H., & Nakamura, N. (2010). Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy, 26(9), S13-20. https://doi.org/10.1016/j.arthro.2010.01.023

    Article  PubMed  Google Scholar 

  22. Kopf, S., Musahl, V., Tashman, S., Szczodry, M., Shen, W., & Fu, F. H. (2009). A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surgery, Sports Traumatology, Arthroscopy, 17, 213–219. https://doi.org/10.1007/s00167-008-0709-5

    Article  PubMed  Google Scholar 

  23. Moulton, S. G., Steineman, B. D., Haut Donahue, T. L., Fontboté, C. A., Cram, T. R., & LaPrade, R. F. (2017). Direct versus indirect ACL femoral attachment fibres and their implications on ACL graft placement. Knee Surgery, Sports Traumatology, Arthroscopy, 25, 165–171. https://doi.org/10.1007/s00167-016-4188-9

    Article  PubMed  Google Scholar 

  24. Parkar, A. P., Adriaensen, M. E. A. P. M., Vindfeld, S., & Solheim, E. (2017). The anatomic centers of the femoral and tibial insertions of the anterior cruciate ligament: A systematic review of imaging and cadaveric studies reporting normal center locations. American Journal of Sports Medicine, 45, 2180–2188. https://doi.org/10.1177/0363546516673984

    Article  PubMed  Google Scholar 

  25. Pietrini, S. D., Ziegler, C. G., Anderson, C. J., et al. (2011). Radiographic landmarks for tunnel positioning in double-bundle ACL reconstructions. Knee Surgery, Sports Traumatology, Arthroscopy, 19, 792–800. https://doi.org/10.1007/s00167-010-1372-1

    Article  PubMed  Google Scholar 

  26. Zantop, T., Wellmann, M., Fu, F. H., & Petersen, W. (2008). Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: Anatomic and radiographic findings. American Journal of Sports Medicine, 36, 65–72. https://doi.org/10.1177/0363546507308361

    Article  PubMed  Google Scholar 

  27. Odensten, M., & Gillquist, J. (1985). Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. Journal of Bone and Joint Surgery. American Volume, 67, 257–262. https://doi.org/10.2106/00004623-198567020-00012

    Article  CAS  PubMed  Google Scholar 

  28. Siebold, R., Ellert, T., Metz, S., & Metz, J. (2008). Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: Morphometry and arthroscopic orientation models for double-bundle bone tunnel placement-a cadaver study. Arthroscopy, 24, 585–592. https://doi.org/10.1016/j.arthro.2007.12.008

    Article  PubMed  Google Scholar 

  29. Yahagi, Y., Iriuchishima, T., Horaguchi, T., Suruga, M., Tokuhashi, Y., & Aizawa, S. (2018). The importance of Blumensaat’s line morphology for accurate femoral ACL footprint evaluation using the quadrant method. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 455–461. https://doi.org/10.1007/s00167-017-4501-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Suruga.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Standard Statement

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suruga, M., Iriuchishima, T., Yahagi, Y. et al. Evaluation of the Angle Between the Long Axis of the Femoral Anterior Cruciate Ligament Footprint and Bony Morphology of the Knee: A Cadaveric Descriptive Study. JOIO 58, 510–516 (2024). https://doi.org/10.1007/s43465-024-01131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-024-01131-5

Keywords

Navigation