Skip to main content
Log in

Morphological size evaluation of the mid-substance insertion areas and the fan-like extension fibers in the femoral ACL footprint

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the detailed anatomy of the femoral anterior cruciate ligament (ACL) insertion site, with special attention given to the morphology of the mid-substance insertion areas and the fan-like extension fibers.

Methods

Twenty-three non-paired human cadaver knees were used (7 Males, 16 Females, median age 83, range 69–96). All soft tissues around the knee were resected except the ligaments. The ACL was divided into antero-medial (AM) and postero-lateral (PL) bundles according to the difference in macroscopic tension patterns. The ACL was carefully dissected and two outlines were made of the periphery of each bundle insertion site: those which included and those which excluded the fan-like extension fibers. An accurate lateral view of the femoral condyle was photographed with a digital camera, and the images were downloaded to a personal computer. The area of each bundle, including and excluding the fan-like extension fibers, was measured with Image J software (National Institution of Health). The width and length of the mid-substance insertion sites were also evaluated using same image.

Results

The femoral ACL footprint was divided into four regions (mid-substance insertion sites of the AM and PL bundles, and fan-like extensions of the AM and PL bundles). The measured areas of the mid-substance insertion sites of the AM and PL bundles were 35.5 ± 12.5, and 32.4 ± 13.8 mm2, respectively. Whole width and length of the mid-substance insertion sites were 5.3 ± 1.4, and 15.5 ± 2.9 mm, respectively. The measured areas of the fan-like extensions of the AM and PL bundles were 27 ± 11.5, and 29.5 ± 12.4 mm2, respectively.

Conclusion

The femoral ACL footprint was divided into quarters of approximately equal size (mid-substance insertion sites of the AM and PL bundles, and fan-like extensions of the AM and PL bundles). For clinical relevance, to perform highly reproducible anatomical ACL reconstruction, the presence of the fan-like extension fibers should be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACL:

Anterior cruciate ligament

AM:

Antero-medial bundle

PL:

Postero-lateral bundle

References

  1. Iriuchishima T, Ryu K, Aizawa S, Fu FH (2016) The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surg Sports Traumatol Arthrosc 24(1):254–259

    Article  PubMed  Google Scholar 

  2. Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction. Part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026

    Article  PubMed  Google Scholar 

  3. Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36(9):1675–1687

    Article  PubMed  Google Scholar 

  4. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy 19(3):297–304

    Article  PubMed  Google Scholar 

  5. Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, Goto B, Smolinski P, Fu FH (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238

    Article  PubMed  Google Scholar 

  6. Muneta T, Koga H, Mochizuki T, Ju YJ, Hara K, Nimura A, Yagishita K, Sekiya I (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double bundle techniques. Arthroscopy 23(6):618–628

    Article  PubMed  Google Scholar 

  7. Tompkins M, Ma R, Hogan MV, Miller MD (2011) What’s new in sports medicine. J Bone Jt Surg Am 93(8):789–797

    Article  Google Scholar 

  8. Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S, Fu FH (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Jt Surg Am 92(6):1418–1426

    Article  Google Scholar 

  9. Hara K, Mochizuki T, Sekiya I, Yamaguchi K, Akita K, Muneta T (2009) Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles. Am J Sports Med 37(12):2386–2391

    Article  PubMed  Google Scholar 

  10. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749

    Article  CAS  PubMed  Google Scholar 

  11. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2014) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22(1):207–213

    Article  PubMed  Google Scholar 

  12. Iwahashi T, Shino K, Nakata K, Otsubo H, Suzuki T, Amano H, Nakamura N (2010) Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography. Arthroscopy 26(9 Suppl):S13–S20

    Article  PubMed  Google Scholar 

  13. Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–1013

    Article  PubMed  Google Scholar 

  14. Mochizuki T, Muneta T, Nagase T, Shirasawa S, Akita KI, Sekiya I (2006) Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anterior cruciate ligament reconstruction. Arthroscopy 22(4):356–361

    Article  PubMed  Google Scholar 

  15. Mochizuki T, Fujishiro H, Nimura A, Mahakkanukrauh P, Yasuda K, Muneta T, Akita K (2014) Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc 22(2):336–344

    Article  PubMed  Google Scholar 

  16. Muneta T, Takakuda K, Yamamoto H (1997) Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med 25(1):69–72

    Article  CAS  PubMed  Google Scholar 

  17. Shino K, Nakata K, Nakamura N, Toritsuka Y, Horibe S, Nakagawa S, Suzuki T (2008) Rectangular tunnel double-bundle anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft to mimic natural fiber arrangement. Arthroscopy 24(10):1178–1183

    Article  PubMed  Google Scholar 

  18. Siebold R, Ellert T, Metz S, Metz J (2008) Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for double-bundle bone tunnel placement-a cadaver study. Arthroscopy 24(5):585–592

    Article  PubMed  Google Scholar 

  19. Takahashi M, Doi M, Abe M, Suzuki D, Nagano A (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34(5):787–792

    Article  PubMed  Google Scholar 

  20. Lubowitz JH, Hwang M, Piefer J, Pflugner R (2014) Anterior cruciate ligament femoral footprint anatomy: systematic review of the 21st century literature. Arthroscopy 30(5):539–541

    Article  PubMed  Google Scholar 

  21. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu FH (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17(3):213–219

    Article  PubMed  Google Scholar 

  22. Luites JW, Wymenga AB, Blankevoort L, Kooloos JG (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc 15(12):1422–1431

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shino K, Mae T, Nakamura N (2012) Surgical technique: revision ACL reconstruction with a rectangular tunnel technique. Clin Orthop Relat Res 470(3):843–852

    Article  PubMed  Google Scholar 

  24. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23(11):1218–1225

    Article  PubMed  Google Scholar 

  25. Smigielski R, Zdanowicz U, Drwięga M, Ciszek B, Ciszkowska-Łysoń B, Siebold R (2015) Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23(11):3143–3150

    Article  PubMed  Google Scholar 

  26. Fu FH (2011) Double-bundle ACL reconstruction. Orthopedics 34(4):281–283

    Article  PubMed  Google Scholar 

  27. Domnick C, Herbort M, Raschke MJ, Bremer S, Schliemann B, Petersen W, Zantop T (2016) Conventional over-the-top-aiming devices with short offset fail to hit the center of the human femoral ACL footprint in medial portal technique, whereas medial-portal-aiming devices with larger offset hit the center reliably. Arch Orthop Trauma Surg 136(4):499–504

    Article  PubMed  Google Scholar 

  28. Park YB, Song YS, Kim SC, Park YG, Ha CW (2015) The size of tibial footprint of anterior cruciate ligament and association with physical characteristics in Asian females. Arch Orthop Trauma Surg 135(7):985–992

    Article  PubMed  Google Scholar 

  29. Iriuchishima T, Tajima G, Shirakura K, Morimoto Y, Kubomura T, Horaguchi T, Fu FH (2011) In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction. Arch Orthop Trauma Surg 131(8):1085–1090

    Article  PubMed  Google Scholar 

  30. Iriuchishima T, Ingham SJ, Tajima G, Horaguchi T, Saito A, Tokuhashi T, Van Houten AH, Aerts MM, Fu FH (2010) Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18(9):1226–1231

    Article  PubMed  Google Scholar 

  31. Iriuchishima T, Tajima G, Ingham SJ, Shen W, Smolinski P, Fu FH (2010) Impingement pressure in the anatomical and non anatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38(8):1611–1617

    Article  PubMed  Google Scholar 

  32. Okada E, Matsumoto M, Ichihara D, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Takahata T (2011) Cross-sectional area of posterior extensor muscles of the cervical spine in asymptomatic subjects: a 10-year longitudinal magnetic resonance imaging study. Eur Spine J 20(9):1567–1573

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shin SH, Jeon IH, Kim HJ, McCullough M, Yi JH, Cho HS, Park IH (2010) Articular surface area of the coronoid process and radial head in elbow extension: surface ration in cadavers and a computed tomography in vivo. J Hand Surg Am 35(7):1120–1125

    Article  PubMed  Google Scholar 

  34. Kawaguchi Y, Kondo E, Takeda R, Akita K, Yasuda K, Amis AA (2015) The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy 31(3):435–444

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takanori Iriuchishima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest on this study.

Funding

There is no funding source.

Ethical approval

This study has been approved by the ethics committee. The no.: 20-14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suruga, M., Horaguchi, T., Iriuchishima, T. et al. Morphological size evaluation of the mid-substance insertion areas and the fan-like extension fibers in the femoral ACL footprint. Arch Orthop Trauma Surg 137, 1107–1113 (2017). https://doi.org/10.1007/s00402-017-2726-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2726-7

Keywords

Navigation