Skip to main content

Advertisement

Log in

Biofilms—What Should the Orthopedic Surgeon know?

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Musculoskeletal infections are a major source of morbidity for orthopedic and trauma patients, are associated with prolonged treatment times, and, unfortunately, suffer from poor functional outcomes. Further complicating the issue, antimicrobial resistance (AMR) is increasingly impacting the treatment of musculoskeletal infections with a diminishing repertoire of effective antibiotic agents for some highly resistant pathogens. Most orthopedic surgical procedures involve implants, and the formation of bacterial biofilms on these implants is now recognized as a major factor contributing to the failure of antibiotic therapy in orthopedic surgery.

Methods

This review presents an overview of the types, structure, formation, and pathogenesis of biofilms as they pertain to musculoskeletal infections. Furthermore, it describes the key concepts in the management of biofilms and future perspectives for the better treatment of patients with biofilm-related musculoskeletal infections.

Results

A bacterial biofilm is a dynamic, living conglomerate of bacteria encased in an extracapsular polysaccharide matrix (EPS). Biofilms are a natural mode of survival for virtually all bacterial species, including both Grampositive and Gram-negative bacteria, as well as fungi. The biofilm model of growth confers resistance by several well-defined mechanisms regardless of the species of the microorganism. In most cases, biofilm management often necessitates radical measures to ensure eradication including both surgical and medical interventions.

Conclusions

Orthopedic surgeons should be aware of the key concepts pertaining to biofilms, and the impact that these can have on clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Schwarz, E. M., Parvizi, J., Gehrke, T., Aiyer, A., Battenberg, A., Brown, S. A., et al. (2019). 2018 International consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 37(5), 997–1006.

    Article  Google Scholar 

  2. Fischbacher, A., & Borens, O. (2019). Prosthetic-joint infections: Mortality over the last 10 years. Journal of Bone and Joint Infection, 4(4), 198–202.

    Article  Google Scholar 

  3. Morgenstern, M., Erichsen, C., Militz, M., Xie, Z., Peng, J., Stannard, J., et al. (2021). The AO trauma CPP bone infection registry: Epidemiology and outcomes of Staphylococcus aureus bone infection. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 39(1), 136–146.

    Article  CAS  Google Scholar 

  4. Surgical Site Infection (SSI) HAI CDC. https://www.cdc.gov/hai/ssi/ssi.html. Published Sep 28, 2021. Accessed 17.10.2022

  5. Parvizi, J., Tan, T. L., Goswami, K., Higuera, C., Della Valle, C., Chen, A. F., et al. (2018). The 2018 definition of periprosthetic hip and knee infection: An evidence-based and validated criteria. The Journal of Arthroplasty, 33(5), 1309-1314.e2.

    Article  Google Scholar 

  6. Metsemakers, W. J., Morgenstern, M., McNally, M. A., Moriarty, T. F., McFadyen, I., Scarborough, M., et al. (2018). Fracture-related infection: A consensus on definition from an international expert group. Injury, 49(3), 505–510.

    Article  CAS  Google Scholar 

  7. Stulberg, J. J., Delaney, C. P., Neuhauser, D. V., Aron, D. C., Fu, P., & Koroukian, S. M. (2010). Adherence to surgical care improvement project measures and the association with postoperative infections. JAMA, 303(24), 2479–2485.

    Article  CAS  Google Scholar 

  8. Hamad, C., Chowdhry, M., Sindeldecker, D., Bernthal, N. M., Stoodley, P., & McPherson, E. J. (2022). Adaptive antimicrobial resistance, a description of microbial variants, and their relevance to periprosthetic joint infection. The Bone and Joint Journal, 104-B(5), 575–80.

    Article  Google Scholar 

  9. Antimicrobial resistance.https://www.who.int/health-topics/antimicrobial-resistance. Accessed 17.10.2022

  10. Alfa, M. J. (2019). Biofilms on instruments and environmental surfaces: Do they interfere with instrument reprocessing and surface disinfection? Review of the literature. American Journal of Infection Control, 47, A39-45.

    Article  Google Scholar 

  11. Arciola, C. R., Campoccia, D., & Montanaro, L. (2018). Implant infections: Adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology, 16(7), 397–409.

    Article  CAS  Google Scholar 

  12. Bhattacharya, M., Wozniak, D. J., Stoodley, P., & Hall-Stoodley, L. (2015). Prevention and treatment of Staphylococcus aureus biofilms. Expert Review of Anti-Infective Therapy, 13(12), 1499–1516.

    Article  CAS  Google Scholar 

  13. Costerton, J. W., Montanaro, L., & Arciola, C. R. (2005). Biofilm in implant infections: Its production and regulation. International Journal of Artificial Organs, 28(11), 1062–1068.

    Article  CAS  Google Scholar 

  14. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–90.

    Article  Google Scholar 

  15. Patel, R. (2005). Biofilms and antimicrobial resistance. Clinical Orthopaedics and Related Research, 437, 41–47.

    Article  Google Scholar 

  16. Wi, Y. M., & Patel, R. (2018). Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infectious Disease Clinics of North America, 32(4), 915–929.

    Article  Google Scholar 

  17. Reygaert, W. C. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501.

    Article  CAS  Google Scholar 

  18. Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. Journal of Molecular Evolution, 88(1), 26–40.

    Article  CAS  Google Scholar 

  19. Sekyere, J. O., & Asante, J. (2018). Emerging mechanisms of antimicrobial resistance in bacteria and fungi: Advances in the era of genomics. Future Microbiology, 13, 241–262.

    Article  CAS  Google Scholar 

  20. Mah, T.-F. (2012). Biofilm-specific antibiotic resistance. Future Microbiology, 7(9), 1061–1072.

    Article  CAS  Google Scholar 

  21. Schilcher, K., & Horswill, A. R. (2020). Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiology and Molecular Biology Reviews, 84(3), e00026-e119.

    Article  Google Scholar 

  22. Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307(8), 481–89.

    Article  CAS  Google Scholar 

  23. Kernien, J. F., Snarr, B. D., Sheppard, D. C., & Nett, J. E. (2017). The interface between fungal biofilms and innate immunity. Frontiers in Immunology, 8, 1968.

    Article  Google Scholar 

  24. Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences, 20(14), E3423.

    Article  Google Scholar 

  25. Yan, J., & Bassler, B. L. (2019). Surviving as a Community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe, 26(1), 15–21.

    Article  CAS  Google Scholar 

  26. Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine, 3(4), a010306.

    Article  Google Scholar 

  27. Muhammad, T., Li, M., Wang, J., Huang, T., Zhao, S., Zhao, H., et al. (2020). Roles of insulin-like growth factor II in regulating female reproductive physiology. Science China Life Sciences. https://doi.org/10.1007/s11427-019-1646-y

    Article  Google Scholar 

  28. Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery, 2(2), 114–122.

    Article  CAS  Google Scholar 

  29. Ronin, D., Boyer, J., Alban, N., Natoli, R. M., Johnson, A., & Kjellerup, B. V. (2022). Current and novel diagnostics for orthopedic implant biofilm infections: A review. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 130(2), 59–81.

    Article  CAS  Google Scholar 

  30. Shoji, M. M., & Chen, A. F. (2020). Biofilms in periprosthetic joint infections: A review of diagnostic modalities current treatments, and future directions. The Journal of Knee Surgery, 33(2), 119–131.

    Article  Google Scholar 

  31. Arciola, C. R., Montanaro, L., & Costerton, J. W. (2011). New trends in diagnosis and control strategies for implant infections. The International Journal of Artificial Organs, 34(9), 727–736.

    Article  CAS  Google Scholar 

  32. Tzeng, A., Tzeng, T. H., Vasdev, S., Korth, K., Healey, T., Parvizi, J., et al. (2015). Treating periprosthetic joint infections as biofilms: key diagnosis and management strategies. Diagnostic Microbiology and Infectious Disease, 81(3), 192–200.

    Article  CAS  Google Scholar 

  33. Dibartola, A. C., Swearingen, M. C., Granger, J. F., Stoodley, P., & Dusane, D. H. (2017). Biofilms in orthopedic infections: A review of laboratory methods. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 125(4), 418–428.

    Article  Google Scholar 

  34. Moley, J. P., McGrath, M. S., Granger, J. F., Sullivan, A. C., Stoodley, P., & Dusane, D. H. (2019). Mapping bacterial biofilms on recovered orthopaedic implants by a novel agar candle dip method. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 127(3), 123–130.

    Article  CAS  Google Scholar 

  35. Shaw, J. D., Brodke, D. S., Williams, D. L., & Ashton, N. N. (2020). Methylene blue is an effective disclosing agent for identifying bacterial biofilms on orthopaedic implants. The Journal of Bone and Joint Surgery American, 102(20), 1784–1791.

    Article  Google Scholar 

  36. Veerachamy, S., Yarlagadda, T., Manivasagam, G., & Yarlagadda, P. K. (2014). Bacterial adherence and biofilm formation on medical implants a review. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 228(10), 1083–1099.

    Article  Google Scholar 

  37. Ibrahim, M. S., Ryan, S., Seyler, T., Arnold, W. V., Stoodley, P., & Haddad, F. (2020). Infection in arthroplasty: The basic science of bacterial biofilms in its pathogenesis Diagnosis, Treatment, and Prevention. Instructional Course Lectures, 69, 229–242.

    Google Scholar 

  38. Vaishya, R., Agarwal, A. K., Rawat, S. K., Singh, H., & Vijay, V. (2017). Is single-stage revision safe following infected total knee arthroplasty? A critical review. Cureus, 9(8), e1629.

    Google Scholar 

  39. Pangaud, C., Ollivier, M., & Argenson, J.-N. (2019). Outcome of single-stage versus two-stage exchange for revision knee arthroplasty for chronic periprosthetic infection. EFORT Open Reviews, 4(8), 495–502.

    Article  Google Scholar 

  40. Belay, E. S., Danilkowicz, R., Bullock, G., Wall, K., & Garrigues, G. E. (2020). Single-stage versus two-stage revision for shoulder periprosthetic joint infection: A systematic review and meta-analysis. Journal of Shoulder and Elbow Surgery, 29(12), 2476–2486.

    Article  Google Scholar 

  41. ter Boo, G. J. A., Grijpma, D. W., Moriarty, T. F., Richards, R. G., & Eglin, D. (2015). Antimicrobial delivery systems for local infection prophylaxis in orthopedic-and trauma surgery. Biomaterials, 52, 113–125.

    Article  Google Scholar 

  42. Lee, A. S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 31(4), 18033. https://doi.org/10.1038/nrdp.2018.33 PMID: 29849094.

    Article  Google Scholar 

  43. Alav, I., Sutton, J. M., & Rahman, K. M. (2018). Role of bacterial efflux pumps in biofilm formation. Journal of Antimicrobial Chemotherapy, 73(8), 2003–2020. https://doi.org/10.1093/jac/dky042 PMID: 29506149.

    Article  CAS  Google Scholar 

  44. Trampuz, A., Piper, K. E., Jacobson, M. J., Hanssen, A. D., Unni, K. K., Osmon, D. R., Mandrekar, J. N., Cockerill, F. R., Steckelberg, J. M., Greenleaf, J. F., & Patel, R. (2007). Sonication of removed hip and knee prostheses for diagnosis of infection. New England Journal of Medicine, 357(7), 654–663. https://doi.org/10.1056/NEJMoa061588 PMID: 17699815.

    Article  CAS  Google Scholar 

  45. Zimmerli, W., & Sendi, P. (2017). Orthopaedic biofilm infections. APMIS, 125(4), 353–364. https://doi.org/10.1111/apm.12687 PMID: 28407423.

    Article  Google Scholar 

  46. Tunney, M. M., & Gorman, S. P. (2002). Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials, 23(23), 4601–4608. https://doi.org/10.1016/s0142-9612(02)00206-5 PMID: 12322981.

    Article  CAS  Google Scholar 

  47. Lin, C. D., Kou, Y. Y., Liao, C. Y., Li, C. H., Huang, S. P., Cheng, Y. W., Liao, W. C., Chen, H. X., Wu, P. L., Kang, J. J., Lee, C. C., & Lai, C. H. (2014). Zinc oxide nanoparticles impair bacterial clearance by macrophages. Nanomedicine, 9(9), 1327–1339. https://doi.org/10.2217/nnm.14.48 Epub 2014 Mar 17 PMID: 24628689.

    Article  CAS  Google Scholar 

  48. Qi, M., Chi, M., Sun, X., Xie, X., Weir, M. D., Oates, T. W., Zhou, Y., Wang, L., Bai, Y., & Xu, H. H. (2019). Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. International Journal of Nanomedicine, 28(14), 6937–6956. https://doi.org/10.2147/IJN.S212807.PMID:31695368;PMCID:PMC6718167

    Article  Google Scholar 

  49. Kaplan, J. B., Mlynek, K. D., Hettiarachchi, H., Alamneh, Y. A., Biggemann, L., Zurawski, D. V., Black, C. C., Bane, C. E., Kim, R. K., & Granick, M. S. (2018). Extracellular polymeric substance (EPS)-degrading enzymes reduce staphylococcal surface attachment and biocide resistance on pig skin in vivo. PLoS One, 13(10), e0205526. https://doi.org/10.1371/journal.pone.0205526.PMID:30304066;PMCID:PMC6179274

    Article  Google Scholar 

  50. Bratanis, E., Andersson, T., Lood, R., & Bukowska-Faniband, E. (2020). Biotechnological potential of Bdellovibrio and like organisms and their secreted Enzymes. Frontiers in Microbiology, 15(11), 662. https://doi.org/10.3389/fmicb.2020.00662.PMID:32351487;PMCID:PMC7174725

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sharma.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Additional information

Communicated by Dr. Vikas Agashe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, M.S., Hooda, A., Moriarty, T.F. et al. Biofilms—What Should the Orthopedic Surgeon know?. JOIO 57, 44–51 (2023). https://doi.org/10.1007/s43465-022-00782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43465-022-00782-6

Keywords

Navigation