Skip to main content

Advertisement

Log in

Comparison of traditional processing and additive manufacturing technologies in various performance aspects: a review

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing, also known as 3D printing, is a revolutionary manufacturing technology. This paper compares the differences between additive manufacturing technologies, such as Fused Deposition Modeling, Selective Laser Sintering, Selective Laser Melting, Stereolithography, Layered Object Manufacturing, and traditional manufacturing processes, such as subtractive and equal manufacturing. The paper mainly discusses the differences between laser additive manufacturing and traditional processing technology in processing principles and materials. The development status of metal alloys, polymer composites, ceramics, and concrete are introduced in the paper. The advantages of metal products manufactured by additive manufacturing technology in mechanical properties and microstructure evolution are highlighted. The paper also identifies the reasons limiting the development of additive manufacturing technology and proposes future prospects, providing a theoretical basis for future research on additive manufacturing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech eng-prc. 2013;8:215–43. https://doi.org/10.1007/s11465-013-0248-8.

    Article  Google Scholar 

  2. Baumers M, Dickens P, Tuck C, Hague R. The cost of additive manufacturing: machine productivity, economies of scale and technology-push. Technol Forecast Soc. 2016;102:193–201. https://doi.org/10.1016/j.techfore.2015.02.015.

    Article  Google Scholar 

  3. Cooke S, Ahmadi K, Willerth S. Metal additive manufacturing: technology, metallurgy and modelling. J Manuf Process. 2020;57:978–1003. https://doi.org/10.1016/j.jmapro.2020.07.025.

    Article  Google Scholar 

  4. Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23:1917–28. https://doi.org/10.1007/s11665-014-0958-z.

    Article  CAS  Google Scholar 

  5. Cam G. Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM). Mater Today Proc. 2022;62:77–85. https://doi.org/10.1016/j.matpr.2022.02.137.

    Article  CAS  Google Scholar 

  6. Cooper DE, Stanford M, Kibble KA, Gibbons GJ. Additive manufacturing for product improvement at red bull technology. Mater Design. 2012;41:226–30. https://doi.org/10.1016/j.matdes.2012.05.017.

    Article  CAS  Google Scholar 

  7. Gonzalez JA, Mireles J, Lin Y. Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int. 2016. https://doi.org/10.1016/j.ceramint.2016.03.079.

    Article  Google Scholar 

  8. Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci. 2012;117:1000724. https://doi.org/10.1016/j.pmatsci.2020.100724.

    Article  CAS  Google Scholar 

  9. Gunen A, Gurol U, Kocak M. Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature. Prog Addit Manuf. 2023. https://doi.org/10.1007/s40964-023-00398-8.

    Article  Google Scholar 

  10. Ceritbinmez F, Gunen A, Gurol U. A comparative study on drillability of Inconel 625 alloy fabricated by wire arc additive manufacturing. J Manuf Process. 2023;89:150–69. https://doi.org/10.1016/j.jmapro.2023.01.072.

    Article  Google Scholar 

  11. Gunen A, Gurol U, Kocak M. 2023 A new approach to improve some properties of wire arc additively manufactured stainless steel components: simultaneous homogenization and boriding. Surf Coat Tech. 2023;460:129395. https://doi.org/10.1016/j.surfcoat.2023.129395.

    Article  CAS  Google Scholar 

  12. Senthil TS, Ramesh Babu S, Puviyarasan M. Mechanical and microstructural characterization of functionally graded Inconel 825-SS316L fabricated using wire arc additive manufacturing. J Mater Res Technol. 2021;15:661–9. https://doi.org/10.1016/j.jmrt.2021.08.060.

    Article  CAS  Google Scholar 

  13. Miller EP, Vandome AF, Mcbrewster J. Fused deposition modeling (2010).

  14. Thrimurthulu K, Pandey PM, Reddy NV. Optimum part deposition orientation in fused deposition modeling. Int J Mach Tool Manu. 2004;44:585–94. https://doi.org/10.1016/j.ijmachtools.2003.12.004.

    Article  Google Scholar 

  15. Qi F, Walther M, Hans-Christian M. Application of machine learning to optimize process parameters in fused deposition modeling of PEEK material. Procedia CIRP. 2022;107:1–8. https://doi.org/10.1016/j.procir.2022.04.001.

    Article  Google Scholar 

  16. Panda BN, Shankhwar K, Garg A. Performance evaluation of warping characteristic of fused deposition modelling process. Int J Adv Manuf Tech. 2016;88:1–13. https://doi.org/10.1007/s00170-016-8914-8.

    Article  Google Scholar 

  17. Smith WC, Dean RW. Structural characteristics of fused deposition modeling polycarbonate material. Polym Test. 2013;32:1306–12. https://doi.org/10.1016/j.polymertesting.2013.07.014.

    Article  CAS  Google Scholar 

  18. Ogden S, Kessler S. Anisotropic finite element modeling of the fused deposition modeling process. Charact Miner Metals Mater. 2014. https://doi.org/10.1002/9781118888056.ch28.

    Article  Google Scholar 

  19. Kumar S. Selective laser sintering: a qualitative and objective approach. JOM. 2003;55(10):43–7. https://doi.org/10.1007/s11837-003-0175-y.

    Article  CAS  Google Scholar 

  20. Kruth JP, Wang X, Laoui T. Lasers and materials in selective laser sintering. Assembly Autom. 2003;23:357–71. https://doi.org/10.1108/01445150310698652.

    Article  Google Scholar 

  21. Duan B, Wang M. Selective Laser Sintering and Its Biomedical Applications. Berlin Heidelberg: Springer; 2013. https://doi.org/10.1007/978-3-642-41341-4_4.

    Book  Google Scholar 

  22. Hooper PA. Melt pool temperature and cooling rates in laser powder bed fusion[J]. Addit Manuf. 2018;22:548–59. https://doi.org/10.1016/j.addma.2018.05.032.

    Article  CAS  Google Scholar 

  23. Silva DN, de Oliveira MG. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Cranio Maxill Surg. 2008;36:443–9. https://doi.org/10.1016/j.jcms.2008.04.003.

    Article  Google Scholar 

  24. Zhang X, Liao Y. A phase-field model for solid-state selective laser sintering of metallic materials. Powder Technol. 2018. https://doi.org/10.1016/j.powtec.2018.08.025.

    Article  Google Scholar 

  25. Niu HJ, Chang I. Liquid phase sintering of M3/2 high speed steel by selective laser sintering. Scripta Mater. 1998;39:67–72. https://doi.org/10.1016/S1359-6462(98)00126-2.

    Article  CAS  Google Scholar 

  26. Xiao B, Zhang Y. Partial melting and resolidification of metal powder in selective laser sintering. J Thermophys Heat Tr. 2006;20:439–48. https://doi.org/10.2514/1.17904.

    Article  CAS  Google Scholar 

  27. Kim J, Creasy TS. Selective laser sintering characteristics of nylon 6/clay-reinforced nanocomposite. Polym Test. 2004;23:629–36. https://doi.org/10.1016/j.polymertesting.2004.01.014.

    Article  CAS  Google Scholar 

  28. Lee PH, Chang YS. Modification and characteristics of biodegradable polymer suitable for selective laser sintering. Int J Precis Eng Man. 2013;14:1079–86. https://doi.org/10.1007/s12541-013-0145-4.

    Article  Google Scholar 

  29. Miura H, Osada T, Ishibashi H, Okawachi K, Uemura M. Development of selective laser sintering for titanium alloy powder3rd report. J Jpn Soc Powder Powder Metall. 2008;55:738–42. https://doi.org/10.2497/jjspm.55.738.

    Article  CAS  Google Scholar 

  30. Thijs L, Verhaeghe F, Craeghs T. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010;58:3303–12. https://doi.org/10.1016/j.actamat.2010.02.004.

    Article  ADS  CAS  Google Scholar 

  31. Ceo OB. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. J Mater Process Tech. 2013;213:1387–405. https://doi.org/10.1016/j.jmatprotec.2013.03.009.

    Article  CAS  Google Scholar 

  32. Alkahari MR, Furumoto T, Da T. Melt pool and single track formation in selective laser sintering/selective laser melting. Adv Mater Res. 2014;933:196–201. https://doi.org/10.4028/www.scientific.net/AMR.933.196.

    Article  CAS  Google Scholar 

  33. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11:26–36. https://doi.org/10.1108/13552540510573365.

    Article  Google Scholar 

  34. Clare T, Chalker PR, Davies S, Tsopanos SS. Selective laser melting of high aspect ratio 3D nickel-titanium structures two way trained for MEMS applications. Int J Mech Mater Des. 2008;4:181–7. https://doi.org/10.1007/s10999-007-9032-4.

    Article  CAS  Google Scholar 

  35. Wehmller M, Warnke PH, Zilian C. Implant design and production-a new approach by selective laser melting. Int Congr Ser. 2005;1281:690–5. https://doi.org/10.1016/j.ics.2005.03.155.

    Article  Google Scholar 

  36. Kruth JP, Froyen L, van Vaerenbergh J. Selective laser melting of iron-based Powder. J Mater process Tech. 2004;149:616–22. https://doi.org/10.1016/j.jmatprotec.2003.11.051.

    Article  CAS  Google Scholar 

  37. Zhou M, Liu W, Wu H. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography-Optimization of the drying and debinding processes. Ceram Int. 2016. https://doi.org/10.1016/j.ceramint.2016.04.050.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chou S, Chou CC, Chen YK. A base function for generating contour traversal paths in stereolithography apparatus applications. Expert Syst Appl. 2008;35:235–44. https://doi.org/10.1016/j.eswa.2007.06.025.

    Article  Google Scholar 

  39. Huang BW, Du ZP, Tao Y. Preparation of a novel hybrid type photosensitive resin for stereolithography in 3D printing and testing on the accuracy of the fabricated parts. Adv Mater Res. 2011;3:3043–7. https://doi.org/10.4028/www.scientific.net/AMR.239-242.3043.

    Article  CAS  Google Scholar 

  40. Huang J. Study on the properties of SL7510 type photosensitive resin for laser curing rapid prototyping. Acta Optica Sinica. 2008;28:2354–8. https://doi.org/10.3788/AOS20082812.2354.

    Article  CAS  Google Scholar 

  41. Fai LK, Kai CC, Hock TC. Microblasting characteristics of jewellery models built using stereolithography apparatus (SLA). Int J Adv Manuf Tech. 1998;14:450–8. https://doi.org/10.1007/BF01304624.

    Article  Google Scholar 

  42. Park J, Tari MJ, Hahn HT. Characterization of the laminated object manufacturing (LOM) process. Rapid Prototyp J. 2000;6:36–50. https://doi.org/10.1108/13552540010309868.

    Article  Google Scholar 

  43. Utela B, Storti D, Anderson R. A review of process development steps for new material systems in three dimensional printing (3DP). J Manuf Process. 2008;10:96–104. https://doi.org/10.1016/j.jmapro.2009.03.002.

    Article  Google Scholar 

  44. Ibrahim D, Broilo TL, Heitz C. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg. 2009;37:167–73. https://doi.org/10.1016/j.jcms.2008.10.008.

    Article  PubMed  Google Scholar 

  45. Gomes CM, Rambo CR, Oliveira AP. Colloidal processing of glass-ceramics for laminated object manufacturing. J Am Ceram Soc. 2010;92:1186–91. https://doi.org/10.1111/j.1551-2916.2009.03035.x.

    Article  CAS  Google Scholar 

  46. Liao A. new approach of online waste removal process for laminated object manufacturing (LOM). J Mater Process Tech. 2003;140:136–40. https://doi.org/10.1016/S0924-0136(03)00690-3.

    Article  Google Scholar 

  47. O’Connor J, Punch J, Jeffers N. A comparison between the hydrodynamic characteristics of 3D-printed polymer and etched silicon microchannels. Microfluid Nanofluid. 2015. https://doi.org/10.1007/s10404-015-1569-1.

    Article  Google Scholar 

  48. Jia W, Gungor-Ozkerim PS, Yu SZ. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deville S. Ice-templating, freeze casting: beyond materials processing. J Mater Res. 2013;28:2202–19. https://doi.org/10.1557/jmr.2013.105.

    Article  ADS  CAS  Google Scholar 

  50. Petrov P, Perfilov V, Stebunov S. Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy A92618. J Mater Process Tech. 2006;177:218–23. https://doi.org/10.1016/j.jmatprotec.2006.03.206.

    Article  CAS  Google Scholar 

  51. Cao X, Jahazi M, Immarigeon JP. A review of laser welding techniques for magnesium alloys. J Mater Process Tech. 2006;171:188–204. https://doi.org/10.1016/j.jmatprotec.2005.06.068.

    Article  CAS  Google Scholar 

  52. Özgün Ö, Gülsoy HÖ, Yılmaz R. Microstructural and mechanical characterization of injection molded 718 superalloy powders. J Alloy Compd. 2013;576:140–53. https://doi.org/10.1016/j.jallcom.2013.04.042.

    Article  CAS  Google Scholar 

  53. Xu KK, Zhang L, Gao LL. Review of microstructure and properties of low temperature lead-free solder in electronic packaging. Sci Technol Adv Mat. 2020;2:689–711. https://doi.org/10.1080/14686996.2020.1824255.

    Article  CAS  Google Scholar 

  54. Bertrand C. The laser welding technique applied to the non precious dental alloys procedure and results. Br Dent J. 2001;190:255–255. https://doi.org/10.1038/sj.bdj.4800942a.

    Article  CAS  PubMed  Google Scholar 

  55. Chang KC, Lu HI, Peng CW. Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings. Acs Appl Mater Inter. 2013;5:1460–7. https://doi.org/10.1021/am3029377.

    Article  CAS  Google Scholar 

  56. Nowak J, Madej L, Grosman F. The material flow analysis in the modified orbital forging technology. Mater Sci Forum. 2010;654–656:1622–5. https://doi.org/10.4028/www.scientific.net/MSF.654-656.1622.

    Article  CAS  Google Scholar 

  57. Priyavrat T. Competitive foundry through integration of TIPS (technology, innovation, product design and process systems. Indian Foundry J. 2012;58:37–42.

    Google Scholar 

  58. Sadade V, Dhake A, Dixit N. Magnetic mould casting: methodology and comparison with traditional sand casting process. Int Adv Res J Sci Eng Technol. 2016;3:223–6. https://doi.org/10.17148/IARJSET/ICAME.43.

    Article  Google Scholar 

  59. Zheng J, Zhou X, Yu Y. Low carbon, high efficiency and sustainable production of traditional manufacturing methods through process design strategy: improvement process for sand casting defects. J Clean Prod. 2019;253:119917. https://doi.org/10.1016/j.jclepro.2019.119917.

    Article  Google Scholar 

  60. Tseng A. Topical review: recent developments in micromilling using focused ion beam technology. J Micromech Microeng. 2004;14:15–34. https://doi.org/10.1088/0960-1317/14/4/R01.

    Article  CAS  Google Scholar 

  61. Malkin S. Grinding technology: theory and applications of machining with abrasives. Int J Mach Tools Manuf. 1991;31:435–6. https://doi.org/10.1016/0890-6955(91)90088-K.

    Article  Google Scholar 

  62. Newman ST, Zhu Z, Dhokia V. Process planning for additive and subtractive manufacturing technologies. Cirp Ann. 2015;64:467–70. https://doi.org/10.1016/j.cirp.2015.04.109.

    Article  Google Scholar 

  63. Kurata Y, Merdol SD, Altintas Y. Chatter stability in turning and milling with in process identified process damping. J Adv Mech Des Syst. 2010;4:1107–18. https://doi.org/10.1299/jamdsm.4.1107.

    Article  Google Scholar 

  64. Blanchard PH. Technology of corn wet milling and associated processes. Amsterdam: Elsevier; 1992.

    Google Scholar 

  65. Xie J, Luo MJ, Wu KK. Experimental study on cutting temperature and cutting force in dry turning of titanium alloy using a non-coated micro-grooved tool. Ind Eng ManaG Syst. 2013;73(1):25–36. https://doi.org/10.1016/j.ijmachtools.2013.05.006.

    Article  Google Scholar 

  66. Chen W. Preparation of water-soluble nanographite and its application in water-based cutting fluid. Nanoscale Res Lett. 2013;8:52–52. https://doi.org/10.1186/1556-276X-8-52.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stanford M, Lister PM, Morgan C, et al. Investigation into the use of gaseous and liquid nitrogen as a cutting fluid when turning BS 970–80A15 (En32b) plain carbon steel using WC-Co uncoated tooling. J Mater Process Tech. 2009;209:961–72. https://doi.org/10.1016/j.jmatprotec.2008.03.003.

    Article  CAS  Google Scholar 

  68. Yao SH, Su YL. On the micro-drilling and turning performance of TiN/AlN nano-multilayer films. Mater Sci Eng A. 2005;392:340–7. https://doi.org/10.1016/j.msea.2004.09.050.

    Article  CAS  Google Scholar 

  69. Morita Y, Sasaki A. Composite cured silicone powder and method for the preparation thereof. US5756568 A, US, 1998.

  70. Drakin NV Pyrotechnical, aerosol-forming composition for extinguishing fires and process for its preparation. US, 2001.

  71. Zhang Y, Zhang YW, Zhang FG. Effect of powder particle size on microstructure and mechanical property of Ni-Based P/M superalloy product. J Iron Steel Res Int. 2003;10:72–5. https://doi.org/10.1007/s11837-003-0111-1.

    Article  Google Scholar 

  72. Xiao J, Zhou F, Chen YB. Preparation of AlN powder by microwave carbon thermal reduction. J Inorg Mater. 2009;24:755–8. https://doi.org/10.3724/SP.J.1077.2009.00755.

    Article  CAS  Google Scholar 

  73. Nekouie RK, Rashchi F, Joda NN. Effect of organic additives on synthesis of copper nano powders by pulsing electrolysis. Powder Tech. 2013;237:554–61. https://doi.org/10.1016/j.powtec.2012.12.046.

    Article  CAS  Google Scholar 

  74. Hsu TI, Wei CM. Nitinol powders generate from plasma rotation electrode process provide clean powder for biomedical devices used with suitable size, spheroid surface and pure composition. Sci Rep. 2018;8:13776. https://doi.org/10.1038/s41598-018-32101-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cui Y, Zhao Y, Numata H. Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process. Powder Technol. 2021;393:301–11. https://doi.org/10.1016/j.powtec.2021.07.062.

    Article  CAS  Google Scholar 

  76. Qiu S, Chen BK, Xiang C. Preparation and properties of spherical mo powders by plasma rotating electrode process for additive manufacturing. Mater Sci Forum. 2020;993:391–7. https://doi.org/10.4028/www.scientific.net/MSF.993.391.

    Article  Google Scholar 

  77. Li SJ, Cui TC, Hao L. Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation. Acta Biomater. 2008;4:305–17. https://doi.org/10.1016/j.actbio.2007.09.009.

    Article  CAS  PubMed  Google Scholar 

  78. Czarnowska E, Wierzchoń T, Maranda-Niedba A. Properties of the surface layers on titanium alloy and their biocompatibility in in vitro tests. J Mater Process Tech. 1999;92–93:190–4. https://doi.org/10.1016/S0924-0136(99)00228-9.

    Article  Google Scholar 

  79. Withers JC, Shapovalov V, Storm R. The production of titanium alloy powder. Key Eng Mater. 2013;551:32–6. https://doi.org/10.4028/www.scientific.net/KEM.551.32.

    Article  CAS  Google Scholar 

  80. Kuroda S, Saida K, Nishimoto K. Microstructure and properties of directly bonded joint of A6061 aluminum alloy to SUS316 stainless steel-study on diffusion bonding of aluminum alloy to stainless steel (report 1). Q J Jpn Weld Soc. 1999;17:484–9. https://doi.org/10.2207/qjjws.17.484.

    Article  CAS  Google Scholar 

  81. Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog Mater Sci. 2015;74:401–77. https://doi.org/10.1016/j.pmatsci.2015.03.002.

    Article  CAS  Google Scholar 

  82. Li Y, Gu D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Design. 2014;63:856–67. https://doi.org/10.1016/j.matdes.2014.07.006.

    Article  CAS  Google Scholar 

  83. Rockiasamy A, German R, Wang P. DSC analysis of Al6061 aluminum alloy powder by rapid solidification. J Therm Anal Calorim. 2010;100:361–6. https://doi.org/10.1007/s10973-009-0587-1.

    Article  CAS  Google Scholar 

  84. Kenzari S, Bonina D, Dubois JM. Additive manufacturing of lightweight, fully Al-based components using quasicrystals. J Mater Process Tech. 2014;214:3108–11. https://doi.org/10.1016/j.jmatprotec.2014.07.011.

    Article  CAS  Google Scholar 

  85. Ghosh SK, Bandyopadhyay K, Saha P. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique-Optimization of process parameters. Mater Charac. 2014;93:68–78. https://doi.org/10.1016/j.matchar.2014.03.021.

    Article  CAS  Google Scholar 

  86. Gotman I, Koczak MJ, Shtessel E. Fabrication of A1 matrix in situ composites via self-propagating synthesis. Mater Sci Eng A. 1994;187:18–99. https://doi.org/10.1016/0921-5093(94)90347-6.

    Article  Google Scholar 

  87. Sheibani N. In situ fabrication of Al-TiC metal matrix composites by reactive slag process. Mater Des. 2007;28:2373–8. https://doi.org/10.1016/j.matdes.2006.08.004.

    Article  CAS  Google Scholar 

  88. Li XP, Kang CW, Huang H. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: processing, microstructure evolution and mechanical properties. Mater Sci Eng A. 2014;606:370–9. https://doi.org/10.1016/j.msea.2014.03.097.

    Article  CAS  Google Scholar 

  89. Thakur DG, Ramamoorthy B, Vijayaraghavan L. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Mater Design. 2011;30:1718–25. https://doi.org/10.1016/j.matdes.2008.07.011.

    Article  CAS  Google Scholar 

  90. Qiong Wu, Yang R-b. A comparative study of four modified Al coatings on Ni3Al-based single crystal superalloy. Prog Nat Sci. 2011;21:496–505. https://doi.org/10.1016/S1002-0071(12)60089-6.

    Article  Google Scholar 

  91. Rao G, Srinivas M, Sarma DS. Effect of oxygen content of powder on microstructure and mechanical properties of hot isotatically pressed superalloy Inconel 718. Mater Sci Eng A. 2006;435:84–99. https://doi.org/10.1016/j.msea.2006.07.053.

    Article  CAS  Google Scholar 

  92. Zhong C, Chen J, Linnenbrin S. A comparative study of Inconel 718 formed by high deposition rate laser metal deposition with ga powder and prep powder. Mater Design. 2016;107:386–92. https://doi.org/10.1016/j.matdes.2016.06.037.

    Article  CAS  Google Scholar 

  93. Shah D, Duhl D. The effect of orientation, temperature and gamma prime size on the yield strength of a single crystal nickel base superalloy. Mater Sci. 1984. https://doi.org/10.7449/1984/Superalloys_1984_105_114.

    Article  Google Scholar 

  94. Monajati H, Taheri AK, Jahazi M. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy. Metall Mater Trans A. 2005;36:895–905. https://doi.org/10.1007/s11661-005-0284-z.

    Article  Google Scholar 

  95. Pang HT, Reed P. Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy. Int J Fatigue. 2008;30:2009–20. https://doi.org/10.1016/j.ijfatigue.2008.01.001.

    Article  CAS  Google Scholar 

  96. Davidson DL. Mixed-mode crack opening displacement measurements for small fatigue cracks growing in Astroloy at 20°C. Fatigue Fract Eng Mater Struct. 2010;23:445–52. https://doi.org/10.1046/j.1460-2695.2000.00293.x.

    Article  Google Scholar 

  97. Qiu CL, Attallah MM, Wu XH. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater Sci Eng A. 2013;564:176–85. https://doi.org/10.1016/j.msea.2012.11.084.

    Article  CAS  Google Scholar 

  98. Nagai M, Tomoyose H, Nishino T. Fabrication of Li3PO4-Al2O3 composites by use of an electrochemical deposition technique. Phosphorus Res Bull. 2012;2:81–6. https://doi.org/10.3363/prb1992.2.0_81.

    Article  Google Scholar 

  99. Olakanmi S. laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: effect of processing conditions and powder properties. J Mater Process TECH. 2013;213:1387–405. https://doi.org/10.1016/j.jmatprotec.2013.03.009.

    Article  CAS  Google Scholar 

  100. Qiu HP, Chen MW, Xie WJ. Research and application of SiC/SiC ceramic matrix composites. Aeronautical Manuf Technol. 2015;483:94–7.

    Google Scholar 

  101. Xiang H, Xiong B, Yu H. Effects of binders on dimensional accuracy and mechanical properties of SiC particulates preforms fabricated by selective laser sintering. Compos Part B Eng. 2013;44:480–3. https://doi.org/10.1016/j.compositesb.2012.04.003.

    Article  CAS  Google Scholar 

  102. Liu MY, Wu JM, Chen AN. Study on fabrication and Properties of SiC composite powders for selective laser sintering. Aerosp Shanghai. 2016;33:125–31.

    Google Scholar 

  103. Shahzad K, Deckers J, Boury S. Preparation and indirect selective laser sintering of alumina /PA microspheres. Ceram Int. 2012;38:1241–7. https://doi.org/10.1016/j.ceramint.2011.08.055.

    Article  CAS  Google Scholar 

  104. Huang BW, Liu SM, Chen WQ. Preparation of a novel hybrid type photosensitive resin for stereolithography in 3D printing and testing on the accuracy of the fabricated parts. Adv Mater Res. 2017. https://doi.org/10.4028/www.scientific.net/AMR.239-242.3043.

    Article  Google Scholar 

  105. Song L, Yi Ting L, Sheng L. Research on Preparation of Organosilicone Resin for SLA 3D Printing. China Plast Ind. 2019;47:143–7.

    Google Scholar 

  106. Zhang S, Xu YS, Sun SS. A review on the progress of 3D printing materials. China Plast. 2016;30:7–14.

    Google Scholar 

  107. Du Y, Sun F, Yuan G. Current status of materials for three-dimensional printing. J Xuzhou Inst Technol. 2014;29:20–4.

    CAS  Google Scholar 

  108. Novak-Marcincin J, Novakova-Marcincinova L. Increasing of product quality produced by rapid prototyping technology. Manuf Technol. 2012;12:71–5.

    Google Scholar 

  109. Massod SH, Song WQ. Development of new metal/polymer materials for rapid tooling using fused deposition modelling. Mater Design. 2014;7:587–94. https://doi.org/10.1016/j.matdes.2004.02.009.

    Article  CAS  Google Scholar 

  110. Tambrallimath V, Keshavamurthy R, Saravanbavan D. Synthesis and characterization of graphene filled PC-ABS filament for FDM applications[C]//AIP Conference Proceedings. AIP Publishing LLC AIP Publishing. https://doi.org/10.1063/1.5085610.

  111. Nováková-Marcininová E, Panda A, et al. Sophisticated production from organic PLA materials processed horizontally by fused deposition modeling method. Key Eng Mater. 2017. https://doi.org/10.4028/www.scientific.net/KEM.756.88.

    Article  Google Scholar 

  112. Arthur CM, Jeffrey S, Elliott AM, et al. Impact of the fused deposition (FDM) printing process on polylactic acid (PLA) chemistry and structure. Appl Sci. 2017;7:579. https://doi.org/10.3390/app7060579.

    Article  CAS  Google Scholar 

  113. Vdpr V. Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA. Mater Today. 2019. https://doi.org/10.1016/j.matpr.2019.06.009.

    Article  Google Scholar 

  114. Sharda H, Kumar A. Effect of various infill types on the strength of the PLA+ material in the fused deposition modeling process. 2019. https://doi.org/10.6084/M9.FIGSHARE.11317277.V1.

  115. Xia L, Wang B, Yang G, Gauthier M. Poly (Lactic Acid)-based biomaterials: synthesis, modification and applications. London: In. Tech; 2012. p. 247–82.

    Google Scholar 

  116. Lim SH, Dasari A, Wang GT. Impact fracture behaviour of nylon 6-based ternary nanocomposites. Compos Part B-eng. 2010;41:67–75. https://doi.org/10.1016/j.compositesb.2009.03.006.

    Article  CAS  Google Scholar 

  117. Wang S, Chang H, Wu H. Study on modification of MC nylon 6 by nano-SiO2 with surface-modified epoxy. Plast Sci Technol. 2016;44:29–33. https://doi.org/10.15925/j.cnki.issn1005-3360.2016.02.003.

    Article  ADS  CAS  Google Scholar 

  118. Liu L, Du X, Zhu M. Research on the microstructure and properties of weld repairs in TA15 titanium alloy. Mater Sci Eng, A. 2007;445:691–6. https://doi.org/10.1016/j.msea.2006.10.001.

    Article  CAS  Google Scholar 

  119. Chu M, Jones IP, Wu X. Effect of carbon on microstructure and mechanical properties of a eutectoid β titanium alloy. J Mater Eng Perform. 2005;14:735–40. https://doi.org/10.1361/105994905X75538.

    Article  CAS  Google Scholar 

  120. Gerber EB. Microalloyed. Vacuum degassed high-strength steels with special emphasis on IF steels. Steel Res Int. 1996;67:430–7. https://doi.org/10.1002/srin.199605515.

    Article  Google Scholar 

  121. Huang T, Xin LJ, Wang ZY. Study on fiber laser welding for dp780 high strength steel. Adv Mater Res. 2011;328–330:48–53. https://doi.org/10.4028/www.scientific.net/AMR.328-330.48.

    Article  CAS  Google Scholar 

  122. Mazzoli A, Moriconi G. Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering. Mater Design. 2007;28:993–1000. https://doi.org/10.1016/j.matdes.2005.11.021.

    Article  CAS  Google Scholar 

  123. Dan IS, Marsavina L. Effect of aluminum particles on the fracture toughness of polyamide-based parts obtained by selective laser sintering (SLS). Procedia Struct Integr. 2019;18:163–9. https://doi.org/10.1016/j.prostr.2019.08.150.

    Article  Google Scholar 

  124. Szost BA, Terzi S. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater Design. 2016;89:559–67. https://doi.org/10.1016/j.matdes.2015.09.115.

    Article  CAS  Google Scholar 

  125. Trosch T, Stroessner J. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett. 2016;164:428–31. https://doi.org/10.1016/j.matlet.2015.10.136.

    Article  CAS  Google Scholar 

  126. Meier H, Haberland C. Experimental studies on selective laser melting of metallic parts. Mater Wiss Werkst. 2008;39:665–70. https://doi.org/10.1002/mawe.200800327.

    Article  CAS  Google Scholar 

  127. Brandl E, Schoberth A, Leyens C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater Sci Eng, A. 2012;532:295–307. https://doi.org/10.1016/j.msea.2011.10.095.

    Article  CAS  Google Scholar 

  128. Wauthle R, Vrancken B, Beynaerts B. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf. 2015;5:77–84. https://doi.org/10.1016/j.addma.2014.12.008.

    Article  CAS  Google Scholar 

  129. Li YH, Gao SY. Additive manufacturing of PLA and CF/PLA binding layer specimens via fused deposition modeling. J Mater Eng Perform. 2018;27:492–500. https://doi.org/10.1007/s11665-017-3065-0.

    Article  CAS  Google Scholar 

  130. Wang J, Liu K. Study on preparation and forming process of SiC powder for laser additive manufacturing. Mater Sci Tech-Lond. 2018;26:9–14.

    Google Scholar 

  131. Ram GDJ, Reddy AV, Rao KP, Sundar JK. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. Mater Process Technol. 2005;167:73–82. https://doi.org/10.1016/j.jmatprotec.2004.09.081.

    Article  CAS  Google Scholar 

  132. Amato K, Gaytan SM, Murr LE. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater. 2012;60:2229–39. https://doi.org/10.1016/j.actamat.2011.12.032.

    Article  ADS  CAS  Google Scholar 

  133. Feng N, Wang X, Wu D. Surface modification of recycled carbon fiber and its reinforcement effect on nylon 6 composites: mechanical properties, morphology and crystallization behaviors. Curr Appl Phys. 2013;13:2038–50. https://doi.org/10.1016/j.cap.2013.09.009.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work was carried out with the support of the National Natural Science Foundation of China (No. 51375082), National Natural Science Foundation of China (No. U1908230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Yadong.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4399 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaikai, X., Yadong, G. & Qiang, Z. Comparison of traditional processing and additive manufacturing technologies in various performance aspects: a review. Archiv.Civ.Mech.Eng 23, 188 (2023). https://doi.org/10.1007/s43452-023-00699-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00699-3

Keywords

Navigation