Skip to main content

Advertisement

Log in

A review on the deformation mechanism and formability enhancement strategies in incremental sheet forming

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The process formability of incremental sheet forming (ISF) is better than the conventional forming processes. Stretching, through-thickness-shear, bending-under-tension (BUT), and compressive forces are the proposed deformation mechanisms for improved formability; however, researchers have not corroborated (on consensus) the relative significance of any one among these. Similarly, researchers observed abrupt fractures (brittle fracture) and fractures preceded by necking (ductile fracture) for different case studies, which initiated a new debate and is still unanswered. Besides, researchers have extended the ISF to energy-assisted ISF to improve the process formability further for materials having a high strength-to-weight ratio. Three prominent energy-assisted ISF are (a) Electric-assisted ISF (E-ISF) works on the principle of lowering the yield stress by raising the temperature and has shown promise for Magnesium and Titanium alloy. (b) The ultrasonic vibration-assisted (UV-ISF) process works on the principle of acoustoplastic softening effect and thus far improved the room temperature material formability while reducing the forming forces. (c) Electromagnetic-assisted ISF (EM-ISF) is a non-contact, high-speed process that utilizes the pulsed magnetic field to apply inertial force, which improves formability by dislocation slips. The EM-ISF and UV-ISF have shown promise to counter the challenges during aluminum alloy forming; however, the work in this regard is still in the initial phase and has not explored its full potential. This study updates the potential research on the current status of the energy-assisted ISF. Different customized testing equipment is discussed that help understand the process mechanism. Microstructural changes in the material occur at normal ISF and with energy-assisted ISF are discussed in detail. Discussion and future work are presented based on the insight from various articles at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Availability of data and materials

The data supporting the article content is reported in this manuscript. Therefore, any additional data is not required to be attached.

References

  1. Yang DY, Bambach M, Cao J, Duflou JR, Groche P, Kuboki T, Sterzing A, Tekkaya AE, Lee CW. Flexibility in metal forming. CIRP Ann. 2018;67:743–65. https://doi.org/10.1016/j.cirp.2018.05.004.

    Article  Google Scholar 

  2. Leszak E. Apparatus and process for incremental dieless forming, 1967. http://www.google.com/patents/US3549577.

  3. Ghafoor S, Li Y, Zhao G, Li J, Ullah I, Li F. Deformation characteristics and formability enhancement during ultrasonic-assisted multi-stage incremental sheet forming. J Mater Res Technol. 2022;18:1038–54. https://doi.org/10.1016/j.jmrt.2022.03.036.

    Article  Google Scholar 

  4. Wu R, Liu X, Li M, Chen J. Investigations on deformation mechanism of double-sided incremental sheet forming with synchronous thermomechanical steel-aluminum alloy bonding. J Mater Process Technol. 2021;294: 117147. https://doi.org/10.1016/j.jmatprotec.2021.117147.

    Article  CAS  Google Scholar 

  5. Valoppi B, Sánchez Egea AJ, Zhang Z, González Rojas HA, Ghiotti A, Bruschi S, Cao J. A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy. CIRP Ann Manuf Technol. 2016;65:309–12. https://doi.org/10.1016/j.cirp.2016.04.135.

    Article  Google Scholar 

  6. Xu DK, Lu B, Cao TT, Zhang H, Chen J, Long H, Cao J. Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater Des. 2016;92:268–80. https://doi.org/10.1016/j.matdes.2015.12.009.

    Article  CAS  Google Scholar 

  7. Jackson K, Allwood J. The mechanics of incremental sheet forming. J Mater Process Technol. 2009;209:1158–74. https://doi.org/10.1016/j.jmatprotec.2008.03.025.

    Article  CAS  Google Scholar 

  8. Davarpanah MA, Zhang Z, Bansal S, Cao J, Malhotra R. Preliminary investigations on double sided incremental forming of thermoplastics. Manuf Lett. 2016;8:21–6. https://doi.org/10.1016/j.mfglet.2016.05.003.

    Article  Google Scholar 

  9. Gatea S, Tawfiq TAS, Ou H. Numerical and experimental investigation of formability in incremental sheet forming of particle-reinforced metal matrix composite sheets. Int J Adv Manuf Technol. 2022;120:1889–900. https://doi.org/10.1007/s00170-022-08881-2.

    Article  Google Scholar 

  10. Ben Said L. The incremental sheet forming; technology, modeling and formability: a brief review. J Process Mech Eng. 2022. https://doi.org/10.1177/09544089221093306.

    Article  Google Scholar 

  11. Emmens WC, Sebastiani G, van den Boogaard AH. The technology of Incremental Sheet Forming—a brief review of the history. J Mater Process Technol. 2010;210:981–97. https://doi.org/10.1016/j.jmatprotec.2010.02.014.

    Article  CAS  Google Scholar 

  12. Ullah S, Li X, Li D. Fast simulation of incremental sheet metal forming by multi-tooling. J Manuf Process. 2022;84:669–80. https://doi.org/10.1016/j.jmapro.2022.10.025.

    Article  Google Scholar 

  13. Wang Y, Wu W, Huang Y, Reddy NV, Cao J. Experimental and numerical analysis of double sided incremental forming. Proc ASME Int Manuf Sci Eng Conf. 2009;1:613–8. https://doi.org/10.1115/MSEC2009-84275.

    Article  Google Scholar 

  14. Duflou JR, Habraken AM, Cao J, Malhotra R, Bambach M, Adams D, Vanhove H, Mohammadi A, Jeswiet J. Single point incremental forming: state-of-the-art and prospects. Int J Mater Form. 2018;11:743–73. https://doi.org/10.1007/s12289-017-1387-y.

    Article  Google Scholar 

  15. Ullah S, Xu P, Li X, Li Y, Han K, Li D. A review on part geometric precision improvement strategies in double-sided incremental forming. Metals (Basel). 2022. https://doi.org/10.3390/met12010103.

    Article  PubMed Central  Google Scholar 

  16. Emmens WC, van den Boogaard AH. An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol. 2009;209:3688–95. https://doi.org/10.1016/j.jmatprotec.2008.10.003.

    Article  CAS  Google Scholar 

  17. Behera AK, de Sousa RA, Ingarao G, Oleksik V. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015. J Manuf Process. 2017;27:37–62. https://doi.org/10.1016/j.jmapro.2017.03.014.

    Article  Google Scholar 

  18. Gatea S, Ou H, Mccartney G. Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol. 2016;87:479–99. https://doi.org/10.1007/s00170-016-8426-6.

    Article  Google Scholar 

  19. Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao G. A review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol. 2017;92:2439–62. https://doi.org/10.1007/s00170-017-0251-z.

    Article  Google Scholar 

  20. Lu H, Liu H, Wang C. Review on strategies for geometric accuracy improvement in incremental sheet forming. Int J Adv Manuf Technol. 2019;102:3381–417. https://doi.org/10.1007/s00170-019-03348-3.

    Article  Google Scholar 

  21. Peng W, Ou H, Becker A. Double-sided incremental forming: a review. J Manuf Sci Eng Trans ASME. 2019;141:1–12. https://doi.org/10.1115/1.4043173.

    Article  Google Scholar 

  22. Ma L, Wang Z. The effects of through-thickness shear stress on the formability of sheet metal—a review. J Manuf Process. 2021;71:269–89. https://doi.org/10.1016/j.jmapro.2021.09.019.

    Article  Google Scholar 

  23. Ai S, Long H. A review on material fracture mechanism in incremental sheet forming. Int J Adv Manuf Technol. 2019;104:33–61. https://doi.org/10.1007/s00170-019-03682-6.

    Article  Google Scholar 

  24. Martins PAF, Bay N, Skjoedt M, Silva MB. Theory of single point incremental forming. CIRP Ann-Manuf Technol. 2008;57:247–52. https://doi.org/10.1016/j.cirp.2008.03.047.

    Article  Google Scholar 

  25. Shim MS, Park JJ. The formability of aluminum sheet in incremental forming. J Mater Process Technol. 2001. https://doi.org/10.1016/S0924-0136(01)00679-3.

    Article  Google Scholar 

  26. Fratini L, Ambrogio G, Di Lorenzo R, Filice L, Micari F. Influence of mechanical properties of the sheet material on formability in single point incremental forming. CIRP Ann Manuf Technol. 2004;53:207–10. https://doi.org/10.1016/S0007-8506(07)60680-5.

    Article  Google Scholar 

  27. Maqbool M, Bambach F. Dominant deformation mechanisms in single point incremental forming (SPIF) and their effect on geometrical accuracy. Int J Mech Sci. 2018;279:279–92.

    Article  Google Scholar 

  28. Filice L, Fratini L, Micari F. Analysis of material formability in incremental forming. CIRP Ann Manuf Technol. 2002;51:199–202. https://doi.org/10.1016/S0007-8506(07)61499-1.

    Article  Google Scholar 

  29. M. Bambach, G. Hirt, S. Junk, Modelling and experimental evaluation of the incremental CNC sheet metal forming process, in: Proc. VII-Th Int. Conf. Comput. Plast., Barcelona, Spain, 2003: pp. 1–15.

  30. Eyckens P, Aerens R, Van Bael A, Duflou J, Van Houtte P. Small-scale finite element modelling of the plastic deformation zone in the incremental forming process. Int J Mater Form. 2008;1:185–8. https://doi.org/10.1007/s12289-008-0.

    Article  Google Scholar 

  31. Sawada T, Fukuhara G. Deformation mechanism of sheet metal in stretch forming with computer numerical control machine tools. J JSTP. 2001;42:1067–9.

    Google Scholar 

  32. Emmens WC, van den Boogaard AH. Incremental forming by continuous bending under tension—an experimental investigation. J Mater Process Technol. 2009;209:5456–63. https://doi.org/10.1016/j.jmatprotec.2009.04.023.

    Article  CAS  Google Scholar 

  33. Young D, Jeswiet J. Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng Part B J Eng Manuf. 2004;218:1453–9. https://doi.org/10.1243/0954405042418400.

    Article  Google Scholar 

  34. Allwood JM, Shouler DR. Generalised forming limit diagrams showing increased forming limits with non-planar stress states. Int J Plast. 2009;25:1207–30. https://doi.org/10.1016/j.ijplas.2008.11.001.

    Article  CAS  Google Scholar 

  35. Eyckens P, Van Bael A, Van Houtte P. Marciniak-Kuczynski type modelling of the effect of Through-Thickness Shear on the forming limits of sheet metal. Int J Plast. 2009;25:2249–68. https://doi.org/10.1016/j.ijplas.2009.02.002.

    Article  CAS  Google Scholar 

  36. Nasiri SMM, Basti A, Hashemi R, Darvizeh A. Effects of normal and through-thickness shear stresses on the forming limit curves of AA3104-H19 using advanced yield criteria. Int J Mech Sci. 2018;137:15–23. https://doi.org/10.1016/j.ijmecsci.2018.01.009.

    Article  Google Scholar 

  37. Jackson KP, Allwood JM, Landert M. Incremental forming of sandwich panels. J Mater Process Technol. 2008;204:290–303. https://doi.org/10.1016/j.jmatprotec.2007.11.117.

    Article  CAS  Google Scholar 

  38. Smith J, Malhotra R, Liu WK, Cao J. Deformation mechanics in single-point and accumulative double-sided incremental forming. Int J Adv Manuf Technol. 2013;69:1185–201. https://doi.org/10.1007/s00170-013-5053-3.

    Article  Google Scholar 

  39. Shrivastava P, Tandon P. Microstructure and texture based analysis of forming behavior and deformation mechanism of AA1050 sheet during Single Point Incremental Forming. J Mater Process Technol. 2019;266:292–310. https://doi.org/10.1016/j.jmatprotec.2018.11.012.

    Article  CAS  Google Scholar 

  40. Chang Z, Chen J. Analytical modeling of fracture strain and experimental validation in incremental sheet forming. J Mater Process Technol. 2021;294: 117118. https://doi.org/10.1016/j.jmatprotec.2021.117118.

    Article  Google Scholar 

  41. Silva MB, Skjoedt M, Martins PAF, Bay N. Revisiting the fundamentals of single point incremental forming by means of membrane analysis. Int J Mach Tools Manuf. 2008;48:73–83. https://doi.org/10.1016/j.ijmachtools.2007.07.004.

    Article  Google Scholar 

  42. Basak S, Prasad KS, Sidpara AM, Panda SK. Single point incremental forming of AA6061 thin sheet: calibration of ductile fracture models incorporating anisotropy and post forming analyses. Int J Mater Form. 2019;12:623–42. https://doi.org/10.1007/s12289-018-1439-y.

    Article  Google Scholar 

  43. Silva MB, Martins PAF. Two-point incremental forming with partial die: theory and experimentation. J Mater Eng Perform. 2013;22:1018–27. https://doi.org/10.1007/s11665-012-0400-3.

    Article  CAS  Google Scholar 

  44. Meier H, Magnus C, Smukala V. Impact of superimposed pressure on dieless incremental sheet metal forming with two moving tools. CIRP Ann Manuf Technol. 2011;60:327–30. https://doi.org/10.1016/j.cirp.2011.03.134.

    Article  Google Scholar 

  45. Lu B, Fang Y, Xu DK, Chen J, Ai S, Long H, Ou H, Cao J. Investigation of material deformation mechanism in double side incremental sheet forming. Int J Mach Tools Manuf. 2015;93:37–48. https://doi.org/10.1016/j.ijmachtools.2015.03.007.

    Article  Google Scholar 

  46. Malhotra R, Cao J, Ren F, Kiridena V, Cedric Xia Z, Reddy NV. Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J Manuf Sci Eng Trans ASME. 2011;133:1–10. https://doi.org/10.1115/1.4005179.

    Article  Google Scholar 

  47. Wang Y, Huang Y, Cao J, Reddy NV. Experimental study on a new method of double side incremental forming. Proc ASME Int Manuf Sci Eng Conf. 2009;1:601–7. https://doi.org/10.1115/MSEC_ICMP2008-72279.

    Article  Google Scholar 

  48. Malhotra R, Cao J, Beltran M, Xu D, Magargee J, Kiridena V, Xia ZC. Accumulative-DSIF strategy for enhancing process capabilities in incremental forming. CIRP Ann Manuf Technol. 2012;61:251–4. https://doi.org/10.1016/j.cirp.2012.03.093.

    Article  Google Scholar 

  49. Xu R, Ren H, Zhang Z, Malhotra R, Cao J. A mixed toolpath strategy for improved geometric accuracy and higher throughput in double-sided incremental forming, In: ASME 2014 Int. Manuf. Sci. Eng. Conf. MSEC 2014 Collocated with JSME 2014 Int. Conf. Mater. Process. 42nd North Am. Manuf. Res. Conf., 2014: pp. 1–8. https://doi.org/10.1115/MSEC2014-4127.

  50. Zhang Z, Ren H, Xu R, Moser N, Smith J, Ndip-Agbor E, Malhotra R, Xia ZC, Ehmann KF, Cao J. A mixed double-sided incremental forming toolpath strategy for improved geometric accuracy. J Manuf Sci Eng Trans ASME. 2015;137:1–7. https://doi.org/10.1115/1.4031092.

    Article  Google Scholar 

  51. Zhang H, Zhang Z, Ren H, Cao J, Chen J. Deformation mechanics and failure mode in stretch and shrink flanging by double-sided incremental forming. Int J Mech Sci. 2018;144:216–22. https://doi.org/10.1016/j.ijmecsci.2018.06.002.

    Article  Google Scholar 

  52. Moser N, Zhang Z, Ren H, Ehmann K, Cao J. An investigation into the mechanics of double-sided incremental forming using finite element methods. AIP Conf Proc. 2016. https://doi.org/10.1063/1.4963474.

    Article  Google Scholar 

  53. Ullah S, Li X, Xu P, Li Y, Han K, Li D. A toolpath strategy for improving geometric accuracy in double-sided incremental sheet forming. Chinese J Aeronaut. 2021. https://doi.org/10.1016/j.cja.2021.12.002.

    Article  Google Scholar 

  54. Zahid M, Xiong J, Li J, Siddique F, Jie L, Aamir M, Sadiq I, Guo W, Faisal M. Structural characterization of a composite joint prepared during laser welding of Ti – 22Al – 27Nb intermetallic alloy with an interlayer of Cu-Hf-Ni-Ti-Zr high entropy bulk metallic glass. Compos Part B. 2022;243: 110167. https://doi.org/10.1016/j.compositesb.2022.110167.

    Article  CAS  Google Scholar 

  55. Simões FJP, Alves de Sousa RJ, Grácio JJA, Barlat F, Yoon JW. Mechanical behavior of an asymmetrically rolled and annealed 1050-O sheet. Int J Mech Sci. 2008;50:1372–80. https://doi.org/10.1016/j.ijmecsci.2008.07.009.

    Article  Google Scholar 

  56. Emmens WC, van der Weijde DH, van den Boogaard AH (2009) The FLC, enhanced formability, and incremental sheet forming. In: IDDRG 09 Conference of Proceeding, Golden Colorado, USA. 2009, p. 773–84. http://purl.org/utwente/69291

  57. Benedyk JC, Parikh NM, Stawarz D. A method for increasing elongation values for ferrous and nonferrous sheet metals(Ferrous and nonferrous sheet metals neck formation prevention for increasing elongation in tensile tests, using continuous plastic bending method). J Mater. 1971;6:16–29.

    Google Scholar 

  58. Iseki H. An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller. J Mater Process Technol. 2001;111:150–4. https://doi.org/10.1016/S0924-0136(01)00500-3.

    Article  Google Scholar 

  59. Haque MZ, Yoon JW. Stress based prediction of formability and failure in incremental sheet forming. Int J Mater Form. 2016;9:413–21. https://doi.org/10.1007/s12289-015-1237-8.

    Article  Google Scholar 

  60. Silva MP, Skjødt M, Bay N. Revisiting singlepoint incremental forming and formability/failure diagrams by means of finite elements and experimentation. J Strain Anal Eng Des. 2009;44:221–34. https://doi.org/10.1038/132817a0.

    Article  Google Scholar 

  61. Hussain G, Gao L, Hayat N, Ziran X. A new formability indicator in single point incremental forming. J Mater Process Technol. 2009;209:4237–42. https://doi.org/10.1016/j.jmatprotec.2008.11.024.

    Article  CAS  Google Scholar 

  62. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J. Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol. 2005;54:88–114. https://doi.org/10.1016/s0007-8506(07)60021-3.

    Article  Google Scholar 

  63. Ai S, Lu B, Chen J, Long H, Ou H. Evaluation of deformation stability and fracture mechanism in incremental sheet forming. Int J Mech Sci. 2017;124–125:174–84. https://doi.org/10.1016/j.ijmecsci.2017.03.012.

    Article  Google Scholar 

  64. Kim YH, Park JJ. Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol. 2002;130:42–6. https://doi.org/10.1016/S0924-0136(02)00788-4.

    Article  Google Scholar 

  65. Hussain G, Gao L, Zhang ZY. Formability evaluation of a pure titanium sheet in the cold incremental forming process. Int J Adv Manuf Technol. 2008;37:920–6. https://doi.org/10.1007/s00170-007-1043-7.

    Article  Google Scholar 

  66. Xu D, Wu W, Malhotra R, Chen J, Lu B, Cao J. Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int J Mach Tools Manuf. 2013;73:37–46. https://doi.org/10.1016/j.ijmachtools.2013.06.007.

    Article  Google Scholar 

  67. Buffa G, Campanella D, Fratini L. On the improvement of material formability in SPIF operation through tool stirring action. Int J Adv Manuf Technol. 2013;66:1343–51. https://doi.org/10.1007/s00170-012-4412-9.

    Article  Google Scholar 

  68. Grün PA, Uheida EH, Lachmann L, Dimitrov D, Oosthuizen GA. Formability of titanium alloy sheets by friction stir incremental forming. Int J Adv Manuf Technol. 2018;99:1993–2003. https://doi.org/10.1007/s00170-018-2541-5.

    Article  Google Scholar 

  69. Lu B, Fang Y, Xu DK, Chen J, Ou H, Moser NH, Cao J. Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tools Manuf. 2014;85:14–29. https://doi.org/10.1016/j.ijmachtools.2014.04.007.

    Article  Google Scholar 

  70. Mirnia MJ, Shamsari M. Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol. 2017;244:17–43. https://doi.org/10.1016/j.jmatprotec.2017.01.029.

    Article  CAS  Google Scholar 

  71. Guzmán CF, Yuan S, Duchêne L, Saavedra Flores EI, Habraken AM. Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct. 2018;151:45–56. https://doi.org/10.1016/j.ijsolstr.2017.04.013.

    Article  Google Scholar 

  72. Fang Y, Lu B, Chen J, Xu DK, Ou H. Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol. 2014;214:1503–15. https://doi.org/10.1016/j.jmatprotec.2014.02.019.

    Article  Google Scholar 

  73. Hussain G, Gao L, Hayat N, Qijian L. The effect of variation in the curvature of part on the formability in incremental forming: an experimental investigation. Int J Mach Tools Manuf. 2007;47:2177–81. https://doi.org/10.1016/j.ijmachtools.2007.05.001.

    Article  Google Scholar 

  74. Silva MP, Skjødt M, Atkins A, Bay N. Singlepoint incremental forming and formability—failure diagrams. J Strain Anal Eng Des. 2008;43:15–35. http://www.ainfo.inia.uy/digital/bitstream/item/7130/1/LUZARDO-BUIATRIA-2017.pdf

  75. Malhotra R, Xue L, Belytschko T, Cao J. Mechanics of fracture in single point incremental forming. J Mater Process Technol. 2012;212:1573–90. https://doi.org/10.1016/j.jmatprotec.2012.02.021.

    Article  Google Scholar 

  76. Bambach M, Todorova M, Hirt G. Experimental and numerical analysis of forming limits in CNC incremental sheet forming. Key Eng Mater. 2007. https://doi.org/10.4028/0-87849-437-5.511.

    Article  Google Scholar 

  77. Ullah S, Li X, Xu P, Li D. Experimental and numerical investigation for sheet thickness thinning in two-point incremental forming (TPIF). Int J Adv Manuf Technol. 2022;5:2–6. https://doi.org/10.1007/s00170-022-09975-7.

    Article  Google Scholar 

  78. Centeno G, Bagudanch I, Martínez-Donaire AJ, García-Romeu ML, Vallellano C. Critical analysis of necking and fracture limit strains and forming forces in single-point incremental forming. Mater Des. 2014;63:20–9. https://doi.org/10.1016/j.matdes.2014.05.066.

    Article  CAS  Google Scholar 

  79. Silva MP, Nielsen PS, Bay N. Failure mechanisms in single-point incremental forming of metals, Int J Adv Manuf Technol. 2011;56:893–903. http://ridum.umanizales.edu.co:8080/jspui/bitstream/6789/377/4/Muñoz_Zapata_Adriana_Patricia_Artículo_2011.pdf.

  80. Gupta P, Jeswiet J. Observations on heat generated in single point incremental forming. Procedia Eng. 2017;183:161–7. https://doi.org/10.1016/j.proeng.2017.04.060.

    Article  CAS  Google Scholar 

  81. Emmens WC, van den Boogaard AH. Extended tensile testing with simultaneous bending, IDDRG 08 Conf. Proc. (2008) 219–29.

  82. Allwood JM, Shouler DR. Design, analysis and application of a novel test for sheet metal forming limits under non-planar stress states. AIP Conf Proc. 2011;1353:1595–600. https://doi.org/10.1063/1.3589744.

    Article  ADS  Google Scholar 

  83. Ai S, Dai R, Long H. Investigating formability enhancement in double side incremental forming by developing a new test method of tension under cyclic bending and compression. J Mater Process Technol. 2020;275: 116349. https://doi.org/10.1016/j.jmatprotec.2019.116349.

    Article  Google Scholar 

  84. Ji YH, Park JJ. Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol. 2008;201:354–8. https://doi.org/10.1016/j.jmatprotec.2007.11.206.

    Article  CAS  Google Scholar 

  85. Ambrogio G, Filice L, Manco GL. Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol. 2008;57:257–60. https://doi.org/10.1016/j.cirp.2008.03.066.

    Article  Google Scholar 

  86. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H. Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann Manuf Technol. 2007;56:273–6. https://doi.org/10.1016/j.cirp.2007.05.063.

    Article  Google Scholar 

  87. Göttmann A, Bailly D, Bergweiler G, Bambach M, Stollenwerk J, Hirt G, Loosen P. A novel approach for temperature control in ISF supported by laser and resistance heating. Int J Adv Manuf Technol. 2013;67:2195–205. https://doi.org/10.1007/s00170-012-4640-z.

    Article  Google Scholar 

  88. Otsu M, Yasunaga M, Matsuda M, Takashima K. Friction stir incremental forming of A2017 aluminum sheets. Procedia Eng. 2014;81:2318–23. https://doi.org/10.1016/j.proeng.2014.10.327.

    Article  CAS  Google Scholar 

  89. Xu D, Lu B, Cao T, Chen J, Long H, Cao J. A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming. Procedia Eng. 2014. https://doi.org/10.1016/j.proeng.2014.10.328.

    Article  Google Scholar 

  90. Fan G, Gao L, Hussain G, Wu Z. Electric hot incremental forming: a novel technique. Int J Mach Tools Manuf. 2008;48:1688–92. https://doi.org/10.1016/j.ijmachtools.2008.07.010.

    Article  Google Scholar 

  91. Ambrogio G, Filice L, Gagliardi F. Formability of lightweight alloys by hot incremental sheet forming. Mater Des. 2012;34:501–8. https://doi.org/10.1016/j.matdes.2011.08.024.

    Article  CAS  Google Scholar 

  92. Bao W, Chu X, Lin S, Gao J. Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater Des. 2015;87:632–9. https://doi.org/10.1016/j.matdes.2015.08.072.

    Article  CAS  Google Scholar 

  93. Zhang H, Chu X, Lin S, Bai H, Sun J. Temperature influence on formability and microstructure of az31b during electric hot temperature-controlled incremental forming. Materials (Basel). 2021;14:1–12. https://doi.org/10.3390/ma14040810.

    Article  ADS  CAS  Google Scholar 

  94. Fan G, Sun F, Meng X, Gao L, Tong G. Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol. 2010;49:941–7. https://doi.org/10.1007/s00170-009-2472-2.

    Article  Google Scholar 

  95. Li X, Zhou Q, Zhao S, Chen J. Effect of pulse current on bending behavior of Ti6Al4V alloy. Procedia Eng. 2014;81:1799–804. https://doi.org/10.1016/j.proeng.2014.10.235.

    Article  CAS  Google Scholar 

  96. Honarpisheh M, Abdolhoseini MJ, Amini S. Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int J Adv Manuf Technol. 2016;83:2027–37. https://doi.org/10.1007/s00170-015-7717-7.

    Article  Google Scholar 

  97. Valoppi B, Zhang Z, Deng M, Ghiotti A, Bruschi S, Ehmann KF, Cao J. On the fracture characterization in double-sided incremental forming of Ti6Al4V sheets at elevated temperatures. Procedia Manuf. 2017;10:407–16. https://doi.org/10.1016/j.promfg.2017.07.014.

    Article  Google Scholar 

  98. Vahdani M, Mirnia MJ, Bakhshi-Jooybari M, Gorji H. Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets. Int J Adv Manuf Technol. 2019;103:1199–209. https://doi.org/10.1007/s00170-019-03624-2.

    Article  Google Scholar 

  99. Li Z, He S, Zhang Y, Gao Z, An Z, Lu S. A novel current-carrying lubrication in electric hot incremental forming of Ti–6Al–4V titanium sheet. J Brazilian Soc Mech Sci Eng. 2022;44:1–10. https://doi.org/10.1007/s40430-022-03485-z.

    Article  Google Scholar 

  100. Adams D, Jeswiet J. Single-point incremental forming of 6061–T6 using electrically assisted forming methods. Proc Inst Mech Eng Part B J Eng Manuf. 2014;228:757–64. https://doi.org/10.1177/0954405413501670.

    Article  CAS  Google Scholar 

  101. Pacheco PAP, Silveira ME. Numerical simulation of electric hot incremental sheet forming of 1050 aluminum with and without preheating. Int J Adv Manuf Technol. 2018;94:3097–108. https://doi.org/10.1007/s00170-017-0879-8.

    Article  Google Scholar 

  102. Li Z, He S, Zhang Y, An Z, Gao Z, Lu S. Numerical prediction of Joule heating effect in electric hot incremental sheet forming. Int J Adv Manuf Technol. 2022;121:8221–30. https://doi.org/10.1007/s00170-022-09888-5.

    Article  Google Scholar 

  103. Dong HR, Li XQ, Li Y, Wang YH, Wang HB, Peng XY, Li DS. A review of electrically assisted heat treatment and forming of aluminum alloy sheet. Int J Adv Manuf Technol. 2022;120:7079–99. https://doi.org/10.1007/s00170-022-08996-6.

    Article  Google Scholar 

  104. Salandro WA, Bunget CJ, Mears L. Several factors affecting the electroplastic effect during an electrically-assisted forming process. J Manuf Sci Eng. 2011;133:1–5. https://doi.org/10.1115/1.4004950.

    Article  Google Scholar 

  105. Perkins TA, Kronenberger TJ, Roth JT. Metallic forging using electrical flow as an alternative to warm/hot working. J Manuf Sci Eng. 2007;129:84–94. https://doi.org/10.1115/1.2386164.

    Article  Google Scholar 

  106. Salandro WA, Jones JJ, McNeal TA, Roth JT, Hong ST, Smith MT. Formability of Al 5xxx sheet metals using pulsed current for various heat treatments. J Manuf Sci Eng. 2010;132:1–11. https://doi.org/10.1115/1.4002185.

    Article  Google Scholar 

  107. Conrad H. Electroplasticity in metals and ceramics. Mater Sci Eng A. 2000;287:276–87. https://doi.org/10.1016/s0921-5093(00)00786-3.

    Article  Google Scholar 

  108. Magnus CS. Joule heating of the forming zone in incremental sheet metal forming: part 1: state of the art and thermal process modelling. Int J Adv Manuf Technol. 2017;91:1309–19. https://doi.org/10.1007/s00170-016-9786-7.

    Article  Google Scholar 

  109. Min J, Seim P, Störkle D, Thyssen L, Kuhlenkötter B. Thermal modeling in electricity assisted incremental sheet forming. Int J Mater Form. 2017;10:729–39. https://doi.org/10.1007/s12289-016-1315-6.

    Article  Google Scholar 

  110. Fan G, Gao L. Numerical simulation and experimental investigation to improve the dimensional accuracy in electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol. 2014;72:1133–41. https://doi.org/10.1007/s00170-014-5769-8.

    Article  Google Scholar 

  111. Meier H, Magnus C. Incremental sheet metal forming with direct resistance heating using two moving tools. Key Eng Mater. 2013;554–557:1362–7. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1362.

    Article  Google Scholar 

  112. Tan JC, Tan MJ. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater Sci Eng A. 2003;339:124–32. https://doi.org/10.1016/S0921-5093(02)00096-5.

    Article  Google Scholar 

  113. Yoon J, Lee Y. Fracture mechanism of Mg-3Al-1Zn sheet at the biaxial state with respect to forming temperatures. Mater Des. 2014;55:43–9. https://doi.org/10.1016/j.matdes.2013.10.024.

    Article  CAS  Google Scholar 

  114. Ning Y, Yao Z, Fu MW, Guo H. Dynamic recrystallization of the hot isostatically pressed P/M superalloy FGH4096 in hot working process. Mater Sci Eng A. 2010;527:6968–74. https://doi.org/10.1016/j.msea.2010.07.018.

    Article  CAS  Google Scholar 

  115. Li Y, Gan W, Zhou W, Li D. Review on residual stress and its effects on manufacturing of aluminium alloy structural panels with typical multi-processes. Chinese J Aeronaut. 2022. https://doi.org/10.1016/j.cja.2022.07.020.

    Article  Google Scholar 

  116. Blaha F, Langenecker B. Dehnung von zink-kristallen unter ultraschalleinwirkung. Naturwissenschaften. 1955;42:556.

    Article  ADS  CAS  Google Scholar 

  117. Langenecker B. Work-softening of metal crystals by alternating the rate of glide strain. Acta Metall. 1961;9:937–40.

    Article  Google Scholar 

  118. Bunget C, Ngaile G. Influence of ultrasonic vibration on micro-extrusion. Ultrasonics. 2011;51:606–16. https://doi.org/10.1016/j.ultras.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  119. Siegert K, Ulmer J. Influencing the friction in metal forming processes by superimposing ultrasonic waves. CIRP Ann Manuf Technol. 2001;50:195–200. https://doi.org/10.1016/S0007-8506(07)62103-9.

    Article  Google Scholar 

  120. Wang Zhen MB, Min W. Study on the Influence of Ultrasonic Vibration Field on Micro-drawing Forming Performance and Surface Quality of Thin-walled Capillaries of Superalloys. In: C.S. of M. Engineering (Ed.), Innov. Plast. Process. Technol. Promot. Dev. Intell. Manuf. 15th Natl. Plast. Eng. Soc. Annu. Conf. 7th Glob. Chinese Plast. Process. Technol. Exch. Conf., Jinan, 2017: pp. 6–18.

  121. Hong Z, Tao X, Xiaobiao S et al. Simulation study of ultrasonic drawing second- order transduction system based on ANSYS. Mech Des Manuf (Chinese Version). 2011;6:189–91.

  122. Haiqun Q, Hong Z, Xiaoguo S, et al. Experimental study on applied anti-tensile force composite ultrasonic vibration drawing. J Harbin Eng Univ (Chinese Version). 2013;34:402–8. https://doi.org/10.1190/segam2013-0137.1.

    Article  Google Scholar 

  123. Vahdati M, Mahdavinejad R, Amini S. Investigation of the ultrasonic vibration effect in incremental sheet metal forming process. Proc Inst Mech Eng Part B J Eng Manuf. 2017;231:971–82. https://doi.org/10.1177/0954405415578579.

    Article  CAS  Google Scholar 

  124. Amini S, HosseinpourGollo A, Paktinat H. An investigation of conventional and ultrasonic-assisted incremental forming of annealed AA1050 sheet. Int J Adv Manuf Technol. 2017;90:1569–78. https://doi.org/10.1007/s00170-016-9458-7.

    Article  Google Scholar 

  125. Long Y, Li Y, Sun J, Ille I, Li J, Twiefel J. Effects of process parameters on force reduction and temperature variation during ultrasonic assisted incremental sheet forming process. Int J Adv Manuf Technol. 2018;97:13–24. https://doi.org/10.1007/s00170-018-1886-0.

    Article  Google Scholar 

  126. Li Y, Zhai W, Wang Z, Li X, Sun L, Li J, Zhao G. Investigation on the material flow and deformation behavior during ultrasonic-assisted incremental forming of straight grooves. J Mater Res Technol. 2020;9:433–54. https://doi.org/10.1016/j.jmrt.2019.10.072.

    Article  Google Scholar 

  127. Alharbi N. Experimental study on designing optimal vibration amplitude in ultrasonic assisted incremental forming of AA6061-T6. Eng Sci Technol Int J. 2022;30: 101041. https://doi.org/10.1016/j.jestch.2021.07.004.

    Article  Google Scholar 

  128. Yang M, Bai L, Li Y, Yuan Q. Influences of vibration parameters on formability of 1060 aluminum sheet processed by ultrasonic vibration-assisted single point incremental forming. Adv Mater Sci Eng. 2019. https://doi.org/10.1155/2019/8405438.

    Article  Google Scholar 

  129. Cheng Z, Li Y, Li J, Li F, Meehan PA. Ultrasonic assisted incremental sheet forming: constitutive modeling and deformation analysis. J Mater Process Technol. 2022. https://doi.org/10.1016/j.jmatprotec.2021.117365.

    Article  Google Scholar 

  130. Obikawa T, Hayashi M. Ultrasonic-assisted incremental microforming of thin shell pyramids of metallic foil. Micromachines. 2017. https://doi.org/10.3390/mi8050142.

    Article  PubMed Central  Google Scholar 

  131. Cheng Z, Li Y, Li J, Li F, Meehan PA. Ultrasonic assisted incremental sheet forming: constitutive modeling and deformation analysis. J Mater Process Technol. 2022;299: 117365. https://doi.org/10.1016/j.jmatprotec.2021.117365.

    Article  Google Scholar 

  132. Deshpande A, Hsu K. Acoustic energy enabled dynamic recovery in aluminium and its effects on stress evolution and post-deformation microstructure. Mater Sci Eng A. 2018;711:62–8. https://doi.org/10.1016/j.msea.2017.11.015.

    Article  CAS  Google Scholar 

  133. Cingara HJMA. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels. J Mater Process Technol. 1992;36:31–42.

    Article  Google Scholar 

  134. Lin YC, Wen DX, Deng J, Liu G, Chen J. Constitutive models for high-temperature flow behaviors of a Ni-based superalloy. Mater Des. 2014;59:115–23. https://doi.org/10.1016/j.matdes.2014.02.041.

    Article  ADS  CAS  Google Scholar 

  135. Shi L, Wu CS, Gao S, Padhy GK. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process. Scr Mater. 2016;119:21–6. https://doi.org/10.1016/j.scriptamat.2016.03.023.

    Article  CAS  Google Scholar 

  136. Abu Aal-Rub RK, Voyiadjis GZ. A physically based gradient plasticity theory. Int J Plast. 2006;22:654–84. https://doi.org/10.1016/j.ijplas.2005.04.010.

    Article  CAS  Google Scholar 

  137. Gao CY, Zhang LC. Constitutive modelling of plasticity of fcc metals under extremely high strain rates. Int J Plast. 2012;32–33:121–33. https://doi.org/10.1016/j.ijplas.2011.12.001.

    Article  CAS  Google Scholar 

  138. Yao Z, Kim GY, Wang Z, Faidley LA, Zou Q, Mei D, Chen Z. Acoustic softening and residual hardening in aluminum: Modeling and experiments. Int J Plast. 2012;39:75–87. https://doi.org/10.1016/j.ijplas.2012.06.003.

    Article  CAS  Google Scholar 

  139. Li Y, Cheng Z, Chen X, Long Y, Li X, Li F, Li J, Twiefel J. Constitutive modeling and deformation analysis for the ultrasonic-assisted incremental forming process. Int J Adv Manuf Technol. 2019;104:2287–99. https://doi.org/10.1007/s00170-019-04031-3.

    Article  Google Scholar 

  140. Dong H, Peng X, Wang H, Fu L, Shiteng Z, Li X, Li L. An anomalous compression-induced softening behavior of AA6014-T4P during cyclic loading. Eur J Mech/A Solids. 2022. https://doi.org/10.1016/j.euromechsol.2022.104864.

    Article  Google Scholar 

  141. Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M. Electromagnetic forming—a review. J Mater Process Technol. 2011;211:787–829. https://doi.org/10.1016/j.jmatprotec.2010.12.012.

    Article  Google Scholar 

  142. Cui X, Li J, Mo J, Fang J, Zhu Y, Zhong K. Investigation of large sheet deformation process in electromagnetic incremental forming. Mater Des. 2015;76:86–96. https://doi.org/10.1016/j.matdes.2015.03.060.

    Article  Google Scholar 

  143. Cui XH, Mo JH, Li JJ, Zhao J, Zhu Y, Huang L, Li ZW, Zhong K. Electromagnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology. J Mater Process Technol. 2014;214:409–27. https://doi.org/10.1016/j.jmatprotec.2013.05.024.

    Article  CAS  Google Scholar 

  144. Guo K, Lei X, Zhan M, Tan J. Electromagnetic incremental forming of integral panel under different discharge conditions. J Manuf Process. 2017;28:373–82. https://doi.org/10.1016/j.jmapro.2017.01.010.

    Article  Google Scholar 

  145. Zhiqiang LJW, Liang H. Optimization design of electromagnetic progressive forming coil for large aluminum alloy curved parts. J Plast Eng (Chinese Version). 2015;22:71–7.

    Google Scholar 

  146. Cui X, Mo J, Li J, Xiao X, Zhou B, Fang J. Large-scale sheet deformation process by electromagnetic incremental forming combined with stretch forming. J Mater Process Technol. 2016;237:139–54. https://doi.org/10.1016/j.jmatprotec.2016.06.004.

    Article  Google Scholar 

  147. Cui X, Du Z, Xiao A, Yan Z, Qiu D, Yu H, Chen B. Electromagnetic partitioning forming and springback control in the fabrication of curved parts. J Mater Process Technol. 2021;288: 116889. https://doi.org/10.1016/j.jmatprotec.2020.116889.

    Article  Google Scholar 

  148. Feng F, Li J, Chen R, Huang L, Su H, Fan S. Multi-point die electromagnetic incremental forming for large-sized sheet metals. J Manuf Process. 2021;62:458–70. https://doi.org/10.1016/j.jmapro.2020.12.022.

    Article  Google Scholar 

  149. Su H, Huang L, Li J, Xiao W, Zhu H, Feng F, Li H, Yan S. Formability of AA 2219-O sheet under quasi-static, electromagnetic dynamic, and mechanical dynamic tensile loadings. J Mater Sci Technol. 2021;70:125–35. https://doi.org/10.1016/j.jmst.2020.07.023.

    Article  CAS  Google Scholar 

  150. Li N, Wang YD, Lin Peng R, Sun X, Liaw PK, Wu GL, Wang L, Cai HN. Localized amorphism after high-strain-rate deformation in TWIP steel. Acta Mater. 2011;59:6369–77. https://doi.org/10.1016/j.actamat.2011.06.048.

    Article  ADS  CAS  Google Scholar 

  151. Armstrong RW, Walley SM. High strain rate properties of metals and alloys. Int Mater Rev. 2008;53:105–28. https://doi.org/10.1179/174328008X277795.

    Article  CAS  Google Scholar 

  152. Nemat-Nasser S, Guo WG, Cheng JY. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 1999;47:3705–20. https://doi.org/10.1016/S1359-6454(99)00203-7.

    Article  ADS  CAS  Google Scholar 

  153. Zhang H, Ravi-Chandar K. On the dynamics of localization and fragmentation-IV. Expansion of Al 6061-O tubes. Int J Fract. 2010;163:41–65. https://doi.org/10.1007/s10704-009-9441-5.

    Article  CAS  Google Scholar 

  154. Su H, Huang L, Li J, Ma F, Ma H, Huang P, Zhu H, Feng F. Inhomogeneous deformation behaviors of oblique hole-flanging parts during electromagnetic forming. J Manuf Process. 2020;52:1–11. https://doi.org/10.1016/j.jmapro.2019.12.047.

    Article  Google Scholar 

  155. Li N, Yu H, Xu Z, Fan Z, Liu L. Electromagnetic forming facilitates the transition of deformation mechanism in 5052 aluminum alloy. Mater Sci Eng A. 2016;673:222–32. https://doi.org/10.1016/j.msea.2016.07.039.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (52075025, 51975328), Project funded by China Postdoctoral Science Foundation (2021T140418), and Fundamental Research Funds for the Central Universities (YWF-22-L-504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Li.

Ethics declarations

Conflict of interest

All authors report no declarations of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All the authors listed have approved the manuscript that is enclosed and the work described has not been submitted elsewhere for publication, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Li, Y., Li, X. et al. A review on the deformation mechanism and formability enhancement strategies in incremental sheet forming. Archiv.Civ.Mech.Eng 23, 55 (2023). https://doi.org/10.1007/s43452-022-00585-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00585-4

Keywords

Navigation