Skip to main content
Log in

Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Thickness stretching included formulation of a multi-layered doubly curved shell in small scale is studied in the present work. Out-of-plane normal strain is accounted in our formulation based on a higher-order theory. Based on this theory, the total transverse deflection is divided into three portions named as bending, shear and stretching parts. Transient formulation of the nanoshell is derived using Hamilton’s principle and nonlocal formulation. The natural frequencies of the nanoshell are obtained in terms of main input parameters, such as initial electric and magnetic potentials, nonlocal parameters, aspect ratio, radii ratio and foundation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benguediab S, Semmah A, Chaht FL, Mouaz S, Tounsi A. An investigation on the characteristics of bending, buckling and vibration of nanobeam via nonlocal beam theory. Int J Comput Method. 2014;11(6):13085.

    Article  MathSciNet  Google Scholar 

  2. Zhang C, Jin Q, Song Y, Wang J, Sun L, Liu H, Dun L, Tai H, Yuan X, Xiao H, Zhu L, Guo S. Vibration analysis of a sandwich cylindrical shell in hygrothermal environment. Nanotech Rev. 2021;10(1):414–30.

    Article  CAS  Google Scholar 

  3. Wang X, Miao X, Jia D, Gao S. Effects of transverse deformation on free vibration of 2D curved beams with general restraints. Shock Vib. 2017;2017:2104015.

    Google Scholar 

  4. Wang Z, Ma L. Effect of thickness stretching on bending and free vibration behaviors of functionally graded graphene reinforced composite plates. Appl Sci. 2021;11(23):11362.

    Article  CAS  Google Scholar 

  5. Ansari R, Gholami R. Size-dependent nonlinear vibrations of first-order shear deformable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. Int J Appl Mech. 2016;8(4):1650053.

    Article  Google Scholar 

  6. Param D, Gajbhiye V, Bhaiya YM. Free vibration analysis of thick isotropic plate by using 5th order shear deformation theory. Prog Civil Struct Eng. 2021;1(1):1–11.

    Google Scholar 

  7. Zhao T-H, Qian W-M, Chu Y-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J Math Inequal. 2021;15(4):1459–72.

    Article  MathSciNet  Google Scholar 

  8. Chu Y-M, Nazir U, Sohail M, Selim MM, Lee JR. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 2021;5(3):119.

    Article  Google Scholar 

  9. Carrera E, Brischetto S, Cinefra M, Soave M. Effects of thickness stretching in functionally graded plates and shells. Compos Part B. 2011;42(2):123–33.

    Article  Google Scholar 

  10. Boulefrakh L, Hebali HC, Abdelbaki B, Abdelmoumen A, Tounsi A, Mahmoud SR. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng. 2019;18(2):161–78.

    Google Scholar 

  11. Thai H-T, Choi D-H. Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates. Compos B. 2014;56:705–16.

    Article  Google Scholar 

  12. Chen H, Wang A, Hao Y, Zhang W. Free vibration of FGM sandwich doubly-curved shallow shell based on a new shear deformation theory with stretching effects. Compos Struct. 2017;179:50–60.

    Article  Google Scholar 

  13. Zhao T-H, Khan MI, Chu Y-M. Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math Methods Appl Sci. 2021. https://doi.org/10.1002/mma.7310.

    Article  Google Scholar 

  14. Gao N, Zhang Z, Deng J, Guo X, Cheng B, Hou H. Acoustic metamaterials for noise reduction: a review. Adv Mater Technol. 2022;7(6):2698.

    Article  Google Scholar 

  15. Khorshidi K, Khodadadi M. Precision closed-form solution for out-of-plane vibration of rectangular plates via trigonometric shear deformation theory. Mech Adv Compos Struct. 2016;3(1):31–43.

    Google Scholar 

  16. Vo TP, Thai H-T, Nguyen T-K, Inam F, Lee J. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Compos Struct. 2015;119:1–12.

    Article  Google Scholar 

  17. Wang H, Wu X, Zheng X, Yuan X. Virtual voltage vector based model predictive control for a nine-phase open-end winding PMSM with a common DC Bus. IEEE Trans Ind Electr. 2022;69(6):5386–97.

    Article  Google Scholar 

  18. Atmane HA, Tounsi A, Bernard F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int J Mech Mater Des. 2017;13:71–84.

    Article  Google Scholar 

  19. Xiao X, Bu G, Ou Z, Li Z. Nonlinear in-plane instability of the confined FGP arches with nanocomposites reinforcement under radially-directed uniform pressure. Eng struct. 2022;252:113670.

    Article  Google Scholar 

  20. Xu Y, Zhang H, Yang F, Tong L, Yang Y, Yan D, Wu Y. Experimental study on small power generation energy storage device based on pneumatic motor and compressed air. Energy Convers Manag. 2021;234: 113949.

    Article  Google Scholar 

  21. Zhang H, Liu Y, Deng Y. Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring. Adv Struct Eng. 2021;24(5):947–61.

    Article  Google Scholar 

  22. Lu N, Wang H, Wang K, Liu Y. Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges. CMES-Comput Model Eng Sci. 2021;127(1):345–60.

    Google Scholar 

  23. Ma X, Quan W, Dong Z, Dong Y, Si C. Dynamic response analysis of vehicle and asphalt pavement coupled system with the excitation of road surface unevenness. Appl Math Model. 2022;104:421–38.

    Article  MathSciNet  Google Scholar 

  24. Hasan SM, Tushar SHK, Hafizur Rahman Md, Shimu AR. An optimized design of electromagnet and float for a magnetic suspension system. Acta Electron Malay. 2019;3(1):14–8.

    Article  Google Scholar 

  25. Rashid S, Sultana S, Karaca Y, Khalid A, Chu Y-M. Some further extensions considering discrete proportional fractional operators. Fractals. 2022;30(1):2240026.

    Article  ADS  Google Scholar 

  26. He ZY, Abbes A, Jahanshahi H, Alotaibi ND, Wang Y. Fractional-order discrete-time SIR epidemic model with vaccination: Chaos and complexity. Mathematics 2022;10(2):165. https://doi.org/10.3390/math10020165.

    Article  Google Scholar 

  27. Hajiseyedazizi SN, Samei ME, Alzabut J, Chu Y-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021;19:1–28.

    MathSciNet  Google Scholar 

  28. Zhang Y, Li HN, Li C, et al. Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction. 2021. https://doi.org/10.1007/s40544-021-0536-y.

    Article  Google Scholar 

  29. Cui X, Li CH, Ding WF, et al. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chin J Aeronaut. 2021. https://doi.org/10.1016/j.cja.2021.08.011.

    Article  Google Scholar 

  30. Liu M, Li C, Zhang Y, et al. Cryogenic minimum quantity lubrication machining: From mechanism to application. Front Mech Eng. 2021;16(4):649–97.

    Article  Google Scholar 

  31. Gao T, Li C, Wang Y, et al. Carbon fiber reinforced polymer in drilling: from damage mechanisms to suppression. Compos Struct. 2022;286:115232.

    Article  CAS  Google Scholar 

  32. Jia D, Zhang Y, Li C. Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Trib Int. 2022;169:107461.

    Article  CAS  Google Scholar 

  33. Li BK, Li CH, Zhang YB, et al. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin J Aeronaut. 2016;29(4):1084–95.

    Article  Google Scholar 

  34. Gao T, Zhang Y, Li C, Wang Y, et al. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng. 2022. https://doi.org/10.1007/s11465-022-0680-8.

    Article  Google Scholar 

  35. Guan H, Huang S, Ding J, Tian F, Xu Q, Zhao J. Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 2020;187:122–34.

    Article  ADS  CAS  Google Scholar 

  36. Ebrahimi N, Tadi Beni Y. Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos Struct. 2016;22(6):1301–36.

    Article  Google Scholar 

  37. Alibeigi B, Tadi Beni Y, Mehralian F. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur Phys J Plus. 2018;133:133.

    Article  Google Scholar 

  38. Wang M-K, Hong M-Y, Xu Y-F, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J Math Inequal. 2020;14(1):1–21.

    Article  MathSciNet  Google Scholar 

  39. Wang H, Zheng X, Yuan X, Wu X. Low-complexity model predictive control for a nine-phase open-end winding pmsm with dead-time compensation. IEEE Trans Power Electron. 2022. https://doi.org/10.1109/TPEL.2022.3146644.

    Article  Google Scholar 

  40. Alibeigi B, Tadi Beni Y. On the size-dependent magneto/electromechanical buckling of nanobeams. Eur Phys J Plus. 2018;133:398.

    Article  Google Scholar 

  41. Ghobadi A, Golestanian H, Tadi Beni Y, Żur KK. On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Commun Nonlinear Sci Numer Sim. 2021;95:105585.

    Article  MathSciNet  Google Scholar 

  42. Shooshtari A, Razavi S. Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos Part B. 2015;78:95–108.

    Article  Google Scholar 

  43. Othman MIA, Said S, Marin M. A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model. Int J Numer Meth Heat Fluid Flow. 2019;29(12):4788–806.

    Article  Google Scholar 

  44. Marin M, Othman MIA, Seadawy AR, Carstea C. A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies. J Taibah Univ Sci. 2020;14(1):653–60.

    Article  Google Scholar 

  45. Touratier M. An efficient standard plate theory. Int J Eng Sci. 1991;29(8):901–16.

    Article  Google Scholar 

  46. Zenkour AM. Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Model. 2006;30:67–84.

    Article  Google Scholar 

  47. Wei J, Xie Z, Zhang W, Luo X, Yang Y, Chen B. Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading. Eng Struct. 2021;230:111599.

    Article  Google Scholar 

  48. Mantari JL, Soares CG. A novel higher-order shear deformation theory with stretching effect for functionally graded plates. Compos B. 2013;45(1):268–81.

    Article  Google Scholar 

  49. Żur KK, Arefi M, Kim J, Reddy JN. Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos B. 2020;182:107601.

    Article  Google Scholar 

  50. Huang H, Huang M, Zhang W, Yang S. Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases. Struct Infrastruct Eng. 2021;17(9):1210–27.

    Article  Google Scholar 

  51. Zenkour AM, Radwan AF. Compressive study of functionally graded plates resting on Winkler—Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Arch Civ Mech Eng. 2018;18:645–58.

    Article  Google Scholar 

  52. Farajpour M, Yazdi RH, Rastgoo A, Loghmani M, Mohammadi M. Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Compos Struct. 2016;140:323–36.

    Article  Google Scholar 

  53. Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. J Appl Mech. 2001;68(4):608–18.

    Article  CAS  Google Scholar 

  54. Nazeer M, Hussain FI, Khan M, et al. Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl Math Comput. 2022;420:126868.

    Article  MathSciNet  Google Scholar 

  55. Iqbal MA, Wang Y, Miah MM, Osman MS. Study on date–Jimbo–Kashiwara–Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 2022;6(1):4.

    Article  Google Scholar 

  56. Chu H-H, Zhao T-H, Chu Y-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math Slovaca. 2020;70(5):1097–112.

    Article  MathSciNet  Google Scholar 

  57. Chu Y-M, Shankaralingappa BM, Gireesha BJ, et al. Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl Math Comput. 2022;419:126883.

    Article  MathSciNet  Google Scholar 

  58. Zhao T-H, Wang M-K, Chu Y-M. On the bounds of the perimeter of an ellipse. Acta Math Sci. 2022;42(2):491–501.

    Article  MathSciNet  Google Scholar 

  59. Wang F-Z, Khan MN, Ahmad I, et al. Numerical solution of traveling waves in chemical kinetics: time-fractional fishers equations. Fractals. 2022;30(2):22400051.

    Article  Google Scholar 

  60. Jin F, Qian Z-S, Chu Y, Rahman M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J Appl Anal Comput. 2022;12(2):790–806.

    MathSciNet  Google Scholar 

  61. Zhao T-H, Wang M-K, Chu Y-M. Concavity and bounds involving generalized elliptic integral of the first kind. J Math Inequal. 2021;15(2):701–24.

    Article  MathSciNet  Google Scholar 

  62. Zhao T-H, He Z-Y, Chu Y-M. On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math. 2020;5(6):6479–95.

    Article  MathSciNet  Google Scholar 

  63. Zhao T-H, Wang M-K, Chu Y-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020;5(5):4512–28.

    Article  MathSciNet  Google Scholar 

  64. Zhao T-H, Wang M-K, Zhang W, Chu Y-M. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl. 2018;2018:251.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  65. Chu Y-M, Zhao T-H. Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J Inequal Appl. 2015;2015:396.

    Article  MathSciNet  Google Scholar 

  66. He Z-Y, Abbes A, Jahanshahi H, Alotaibi ND, Wang Y. Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity. Mathematics. 2022;10(2):165.

    Article  Google Scholar 

  67. Zhao T-H, Zhou B-C, Wang M-K, Chu Y-M. On approximating the quasi-arithmetic mean. J Inequal Appl. 2019;2019:12.

    Article  MathSciNet  Google Scholar 

  68. Zhao T-H, Yang Z-H, Chu Y-M. Monotonicity properties of a function involving the psi function with applications. J Inequal Appl. 2015;2015:193.

    Article  MathSciNet  Google Scholar 

  69. Chu Y-M, Wang H, Zhao T-H. Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means. J Inequal Appl. 2014;2014:299.

    Article  MathSciNet  Google Scholar 

  70. Zhao T-H, Qian W-M, Chu Y-M. On approximating the arc lemniscate functions. Indian J Pure Appl Math. 2022;53:316–29.

    Article  MathSciNet  Google Scholar 

  71. Song Y-Q, Zhao T-H, Chu Y-M, Zhang X-H. Optimal evaluation of a Toader-type mean by power mean. J Inequal Appl. 2015;408:12.

    MathSciNet  Google Scholar 

  72. Huang H, Guo M, Zhang W, Huang M. Seismic behavior of strengthened RC columns under combined loadings. J Bridge Eng. 2022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.

    Article  Google Scholar 

  73. Huang X, Cao M, Wang D, Li X, Fan J, Li X. Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene. Opt Mater Express. 2022;12(2):811.

    Article  ADS  CAS  Google Scholar 

  74. Kiani Y, Shakeri M, Eslami MR. Thermoelastic free vibration and dynamic behavior of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation. Acta Mech. 2012;223:1199–218.

    Article  MathSciNet  Google Scholar 

  75. Sun H, Zhao T-H, Chu Y-M, Liu B-Y. A note on the Neuman-Sandor mean. J Math Inequal. 2014;8(2):287–97.

    Google Scholar 

  76. Peng Y, Xu Z, Wang M, Li Z, Peng J, Luo J, Yang Z. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renew Energy. 2021;172:551–63. https://doi.org/10.1016/j.renene.2021.03.064.

    Article  Google Scholar 

Download references

Funding

This study was funded by X (4005279/025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Appendix A

Appendix A

$$q_{out} = q\left[ {1 + \frac{h}{{2R_{1} }}} \right]\left[ {1 + \frac{h}{{2R_{2} }}} \right], q_{in} = R_{f} \left[ {1 + \frac{h}{{2R_{1} }}} \right]\left[ {1 + \frac{h}{{2R_{2} }}} \right]g_{{x_{3} = - \frac{h}{2}}}$$
(A.1)
$$\overline{{N_{{0x_{1} }} }} = \left( {N_{{0x_{1} }} + N_{{E0x_{1} }} + N_{{M0x_{1} }} } \right),\overline{{N_{{0x_{2} }} }} = \left( {N_{{0x_{2} }} + N_{{E0x_{2} }} + N_{{M0x_{2} }} } \right)$$
(A.2)
$$R_{f} = K_{w} w - K_{G} \nabla^{2} w$$
(A.3)
$$\left\{ {N_{{E0x_{2} }} ,N_{{M0x_{2} }} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \frac{2}{h}Y_{2} \left\{ {e_{{32}} \Psi _{0} ,q_{{32}} {{\Phi }}_{0} } \right\}dx_{3}$$
(A.4)
$$\left\{ {N_{1} ,M_{1} ,S_{1} ,P_{1} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \sigma_{1} Y_{1} \left\{ {1,x_{3} ,f\left( {x_{3} } \right),g\left( {x_{3} } \right)} \right\}dx_{3}$$
(A.5)
$$\left\{ {N_{2} ,M_{2} ,S_{2} ,P_{2} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \sigma_{2} Y_{2} \left\{ {1,x_{3} ,f\left( {x_{3} } \right),g\left( {x_{3} } \right)} \right\}dz$$
(A.6)
$$\left\{ {N_{13} ,M_{13} ,S_{13} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \sigma_{13} \left\{ {\frac{{Y_{1} }}{{R_{1} }},x_{3} \left\{ { - f^{\prime}\left( {x_{3} } \right) + 1} \right\},g\left( {x_{3} } \right)Y_{1} } \right\}dx_{3}$$
(A.7)
$$\left\{ {N_{23} ,M_{23} ,S_{23} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \sigma_{23} \left\{ {\frac{{Y_{2} }}{{R_{2} }},x_{3} \left\{ { - f^{\prime}\left( {x_{3} } \right) + 1} \right\},g\left( {x_{3} } \right)Y_{2} } \right\}dx_{3}$$
(A.8)
$$\left\{ {N_{12} ,N_{21} ,M_{12} ,S_{12} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \sigma_{12} \left\{ {Y_{1} ,Y_{2} ,x_{3} \left\{ {Y_{1} + Y_{2} } \right\},f\left( {x_{3} } \right)} \right\}dx_{3}$$
(A.9)
$$\left\{ {G_{3} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \sigma_{3} g^{\prime}\left( {x_{3} } \right)dx_{3}$$
(A.10)
$$\left\{ {\overline{{D_{i} }} ,\overline{{B_{i} }} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} cos\frac{\pi z}{h}\left\{ {D_{i} Y_{i} ,B_{i} Y_{i} } \right\}dx_{3} ,i = 1,2$$
(A.11)
$$\left\{ {\overline{{D_{3} }} ,\overline{{B_{3} }} } \right\} = \mathop \int \nolimits_{{ - \frac{{h_{c} }}{2} - h_{p} }}^{{ + \frac{{h_{c} }}{2} + h_{p} }} \frac{\pi }{h}sin\frac{{\pi x_{3} }}{h}\left\{ {D_{3} ,B_{3} } \right\}dx_{3} ,i = 1,2$$
(A.12)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefi, M., Mannani, S. & Collini, L. Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching. Archiv.Civ.Mech.Eng 22, 196 (2022). https://doi.org/10.1007/s43452-022-00514-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00514-5

Keywords

Navigation