Skip to main content
Log in

The effect of thickness on fracture characteristics of TC4 titanium alloy sheets

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Single-edge crack tensile tests of TC4 titanium alloys with different plate thicknesses were conducted, and digital image correlation technique was used to obtain crack tip opening displacement (δ5) and crack mouth opening displacement (V). The influence of thickness on the fracture characteristics of the TC4 titanium alloy sheets is studied from four aspects: overall deformation, fracture morphology, crack initiation and propagation behavior. Results show that TC4 titanium alloy sheets exhibit ductile–brittle transition (DBT) in the thickness range of 0.6–1.8 mm. The load–displacement curves and the characteristics of fracture surface can only be used to qualitatively judge the toughness and brittleness of materials. Cracking parameters and plastic zone sizes fluctuate within the thickness of 1.5–1.8 mm. The plastic zone considering thickness constraint (rp/B) can be used to characterize the ductileness and brittleness of TC4 titanium alloy sheets under different thicknesses. The rp/B for 1.5–1.8 mm thick sheets is in the lower plateau of the DBT. The rp/B for 0.6 mm thick sheets is in the upper plateau of the DBT, and that for 0.8–1.2 mm thick sheets is in the transition zone. During the unstable crack propagation, the crack propagates in a self-similar way, and the gradient of the Vδ5 curves can characterize the ability of resistance to crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

SEM:

Scanning electron microscope

CP-Ti:

Commercially pure titanium

DBT:

Ductile–brittle transition

DIC:

Digital image correlation

ASTM:

American Society for Testing and Materials

GB/T:

National recommended standards of the People’s Republic of China

\({\sigma}_{\text{ys}}\) :

Yield strength

\({\sigma}_{\text{b}}\) :

Ultimate strength

E :

Elasticity modulus

W:

Plate width

B :

Plate thickness

\({\text{a}}_{0}\) :

Initial crack length

V :

Crack mouth opening displacement

δ :

Crack tip opening displacement

δ 5 :

Crack tip opening displacement obtained by the experiment

\({\delta}_{\text{I}}\) :

Crack tip opening displacement given by Irwin

\({\delta}_{\text{D}}\) :

Crack tip opening displacement given by Dugdale

P :

Load

P i :

Crack initiation load

P max :

The maximum load

R :

The load normalized by plate thickness

K c :

Plane stress fracture toughness

\({\text{K}}_{\text{I}}\) :

Stress intensity factor of type I crack

\({\text{f}} ( {\text{g}} )\) :

Geometry factor

\({\sigma}\) :

Far-field stress

a :

Mean crack extension

\(\Delta {\text{a}}_{\text{s}}\) :

Crack extension on the surface

\(\Delta {\text{a}}_{\text{c}}\) :

Crack extension at the crack tip

\(\Delta {\text{a}}_{\text{max}}\) :

Crack extension at the maximum load

r p :

Plastic zone

r p/B :

Plastic zone normalized by plate thickness

CTOA:

Crack tip opening angle

References

  1. Feng P, Yang C, Wang B, Li J, Liu R. Microstructure and mechanical properties of TC4 titanium alloy hollow shaft formed by cross wedge rolling. Arch Civ Mech Eng. 2021;21:129. https://doi.org/10.1007/s43452-021-00276-6.

    Article  Google Scholar 

  2. Wu Z, Kou H, Tang L, Chen W, Li J. Microstructural effects on the high-cycle fatigue and fracture behaviors of Ti-6Al-4V alloy. Eng Fract Mech. 2020;235:107129. https://doi.org/10.1016/j.engfracmech.107129.2020.

    Article  Google Scholar 

  3. Moussaoui M, Meziani S. Analysis of toughness on notched specimens by volumetric method. World J Eng. 2013;10(5):423–32. https://doi.org/10.1260/1708-5284.10.5.423.

    Article  Google Scholar 

  4. Schmidt HJ, Schmidt-Brandecker B. Fatigue and damage tolerance behaviour of advanced structures in aeronautics. In: Proceedings of 18th European conference on fracture-fracture of materials and structures from micro to macro scale. 2010.

  5. Zerbst U, Heinimann M, Dalle Donne C, Steglich D. Fracture and damage mechanics modelling of thin-walled structures—an overview. Eng Fract Mech. 2009;76(1):5–43. https://doi.org/10.1016/j.engfracmech2007.10.005.

    Article  Google Scholar 

  6. Guo W, Dong H, Lu M, Zhao X. The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel. Int J Pres Ves Pip. 2002;79(6):403–12. https://doi.org/10.1016/S0308-0161(02)00039-X.

    Article  CAS  Google Scholar 

  7. Lynch SP, Wanhill R, Byrnes RT, Bray GH. Fracture toughness and fracture modes of aerospace aluminum-lithium alloys. In: Eswara Prasad N, Gokhale Amol A, Wanhill RJH, editors. Aluminum-lithium alloys. Butterworth-Heinemann; 2014. p. 415–55.

    Chapter  Google Scholar 

  8. Anderson WE. Some designer-oriented views on brittle fracture. conference: 1969 Gulf Coast metals conference in Houston, Texas, February 27, 1969.

  9. Bluhm JI. A model for the effect of thickness on fracture toughness. ASTM Proc. 1961;61:1324–31.

    Google Scholar 

  10. Mouritz AP. Introduction of aerospace materials: fracture toughness properties of aerospace materials. 1st ed. Cambridge: Woodhead Publishing Limited; 2012.

    Book  Google Scholar 

  11. Preibβ E. Fracture toughness of freestanding metallic thin films studied by bulge testing. Erlangen: Erlangen FAU University Press; 2018. https://doi.org/10.25593/978-3-96147-118-8.

    Book  Google Scholar 

  12. Srinivasu G, Natraj Y, Bhattacharjee A, Nandy TK, Nageswara Rao GVS. Tensile and fracture toughness of high strength β titanium alloy, Ti-10V-2Fe-3Al, as a function of rolling and solution treatment temperatures. Mater Des. 2013;47(47):323–30. https://doi.org/10.1016/j.matdes.2012.11.053.

    Article  CAS  Google Scholar 

  13. Galda KH, Munz D. The effect of specimen thickness on the fracture toughness of Ti-6A1-4V. Int J Fract. 1972;8(4):472–4. https://doi.org/10.1007/BF00191114.

    Article  CAS  Google Scholar 

  14. Tang B, Wang Q, Guo N, Li X, Wang Q, Ghiotti A, Bruschi S, Luo Z. Modeling anisotropic ductile fracture behavior of Ti-6Al-4V titanium alloy for sheet forming applications at room temperature. Int J Solids Struct. 2020;207(1):178–95. https://doi.org/10.1016/j.ijsolstr.2020.10.011.

    Article  CAS  Google Scholar 

  15. Horiya T, Kishi T. Relationship between fracture toughness and crack extension resistance curves (R curves) for Ti-6Al-4V alloys. Metall Mater Trans A. 1998;29(3):781–9. https://doi.org/10.1007/s11661-998-0269-9.

    Article  Google Scholar 

  16. Valoppi B, Bruschi S, Ghiotti A. Modelling of fracture onset in Ti6Al4V sheets deformed at elevated temperature. Procedia Manuf. 2016;5:248–58. https://doi.org/10.1016/j.promfg.2016.08.022.

    Article  Google Scholar 

  17. Giglio M, Manes A, Viganò F. Ductile fracture locus of Ti-6Al-4V titanium alloy. Int J Mech Sci. 2012;54(1):121–35. https://doi.org/10.1016/j.ijmecsci.2011.10.003.

    Article  Google Scholar 

  18. Verleysen P, Peirs J. Quasi-static and high strain rate fracture behaviour of Ti6Al4V. Int J Impact Eng. 2017;108:370–88. https://doi.org/10.1016/j.ijimpeng.2017.03.001.

    Article  Google Scholar 

  19. Zhang X, Zhang S, Zhao Q, Zhao Y, Li R, Zeng W. In-situ observations of the tensile deformation and fracture behavior of a fine-grained titanium alloy sheet. J Alloys Compd. 2018;740:660–8. https://doi.org/10.1016/j.jallcom.2018.01.009.

    Article  CAS  Google Scholar 

  20. Sun L, Xu Z, Peng L, Lai X. Effect of grain size on the ductile-brittle fracture behavior of commercially pure titanium sheet metals. Mater Sci Eng A. 2021;822(1): 141630. https://doi.org/10.1016/j.msea.2021.141630.

    Article  CAS  Google Scholar 

  21. Nasiri-Abarbekoh H, Ekrami A, Ziaei-Moayyed AA. Effects of thickness and texture on mechanical properties anisotropy of commercially pure titanium thin sheets. Mater Des. 2013;44:528–34. https://doi.org/10.1016/j.matdes.2012.08.046.

    Article  CAS  Google Scholar 

  22. Aliakbari S, Yegaie YS. The effect of microstructural features and thickness on fracture toughness of Ti-6Al-4V ELI thin sheets. Arab J Sci Eng. 2018;43(3):1247–55. https://doi.org/10.1007/s13369-017-2815-5.

    Article  CAS  Google Scholar 

  23. Wang P, Hao W, Xie J, He F, Wang F, Huo C. Stress triaxial constraint and fracture toughness properties of X90 pipeline steel. Metals. 2022;12(1):72. https://doi.org/10.3390/met12010072.

    Article  CAS  Google Scholar 

  24. Mahmoud S, Lease K. The effect of specimen thickness on the experimental characterization of critical crack-tip-opening angle in 2024-T351 aluminum alloy. Eng Fract Mech. 2003;70(3–4):443–56. https://doi.org/10.1016/S0013-7944(02)00130-3.

    Article  Google Scholar 

  25. Kang YL, Zhang ZF, Wang HW, Qin QH. Experimental investigations of the effect of thickness on fracture toughness of metallic foils. Mat Sci Eng A. 2005;394(1–2):312–9. https://doi.org/10.1016/S0026-0576(97)86796-7.

    Article  Google Scholar 

  26. Ben Amara M, Pluvinage G, Capellel J, Azari Z. Crack tip opening angle as a fracture resistance parameter to describe ductile crack extension and arrest in steel pipes under service pressure. Phys Mesomech. 2015;18(4):355–69. https://doi.org/10.1134/S1029959915040086.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding of experimental materials of AVIC Manufacturing Technology Institute. For confidential reasons, it is not convenient to disclose the funding project and funding number.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Zhang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our study; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in the manuscript entitled.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, H., Ma, H. et al. The effect of thickness on fracture characteristics of TC4 titanium alloy sheets. Archiv.Civ.Mech.Eng 22, 151 (2022). https://doi.org/10.1007/s43452-022-00473-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00473-x

Keywords

Navigation