Skip to main content
Log in

Mechanistic correlation of molecular pathways in obesity-mediated stroke pathogenesis

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Obesity, a prominent risk factor for the development of heart attacks and several cardiovascular ailments. Obesity ranks as the second most significant avoidable contributor to mortality, whereas stroke stands as the second leading cause of death on a global scale. While changes in lifestyle have been demonstrated to have significant impacts on weight management, the long-term weight loss remains challenging, and the global prevalence of obesity continues to rise. The pathophysiology of obesity has been extensively studied during the last few decades, and an increasing number of signal transduction pathways have been linked to obesity preclinically. This review is focused on signaling pathways, and their respective functions in regulating the consumption of fatty food as well as accumulation of adipose tissue, and the resulting morphological and cognitive changes in the brain of individuals with obesity. We have also emphasized the recent progress in the mechanisms behind the emergence of obesity, as elucidated by both experimental and clinical investigations. The mounting understanding of signaling transduction may shed light on the future course of obesity research as we move into a new era of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ATMs:

Adipose tissue macrophages

BAT:

Brown adipose tissue

BBB:

Blood-brain barrier

BMI:

Body mass index

CCL2:

C-C motif chemokine 2

CXCL1:

C-X-C motif chemokine 1

HPA:

Hypothalamic-pituitary-adrenal

IL:

1-Cytokines interleukin-1

IL:

6-Interleukin-6

LDL:

Low-density lipoprotein

MCP:

1-Monocyte chemoattractant protein 1

MELT:

Middle cerebral artery embolism local fibrinolytic intervention

RCTs:

Randomized clinical trials

TGs:

Triacylglycerols

TNF:

α-Tumor necrosis factor

UCP:

1-Uncoupled protein

WAT:

White adipose tissue

WHR:

Waist-to-hip ratio

References

  1. Sui SX, Pasco JA. Obesity and brain function: the brain–body crosstalk. Medicina. 2020;56(10):499. https://doi.org/10.3390/medicina56100499.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64(1):35–46. https://doi.org/10.1016/j.metabol.2014.10.015.

    Article  CAS  PubMed  Google Scholar 

  3. Hruby A, Hu FB. The epidemiology of obesity: a big picture. PharmacoEconomics. 2015;33:673–89. https://doi.org/10.1007/s40273-014-0243-x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Uranga RM, Keller JN. The complex interactions between obesity, metabolism and the brain. Front Neurosci. 2019;13:513. https://doi.org/10.3389/fnins.2019.00513.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Karaca Ü, Schram MT, Houben AJ, Muris DM, Stehouwer CD. Microvascular dysfunction as a link between obesity, insulin resistance and hypertension. Diabetes Res Clin Pract. 2014;103(3):382–7. https://doi.org/10.1016/j.diabres.2013.12.012.

    Article  CAS  PubMed  Google Scholar 

  6. Arora B, Khan H, Grewal AK, Singh TG. Mechanistic insights on the role of nitric oxide in ischemia-reperfusion injury. InNitric Oxide in Health and Disease (pp. 275–285). Academic Press. https://doi.org/10.1016/B978-0-443-13342-8.00004-1.

  7. Kernan WN, Inzucchi SE, Sawan C, Macko RF, Furie KL. Obesity: a stubbornly obvious target for stroke prevention. Stroke. 2013;44(1):278–86. https://doi.org/10.1161/STROKEAHA.111.639922.

    Article  PubMed  Google Scholar 

  8. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med. 2013;348(17):1625–38. https://doi.org/10.1056/NEJMoa021423.

    Article  Google Scholar 

  9. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2013;20(9):2358. https://doi.org/10.3390/ijms20092358.

    Article  CAS  Google Scholar 

  10. White U, Ravussin E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia. 2019;62(1):17–23. https://doi.org/10.1007/s00125-018-4732-x.

    Article  PubMed  Google Scholar 

  11. Kwok KH, Lam KS, Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med. 2016;48(3):e215. https://doi.org/10.1038/emm.2016.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Firdous SM, Ghosh S, Nath P, Khan H. Molecular basis of diabetic nephropathy. Diabetes and diabetic complications. Nova Science, Hauppauge.

  13. Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, Silva-Pereyra J. Structural brain changes associated with overweight and obesity. J Obes. 2021. https://doi.org/10.1155/2021/6613385.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marqués-Iturria I, Pueyo R, Garolera M, Segura B, Junqué C, García-García I, et al. Frontal cortical thinning and subcortical volume reductions in early adulthood obesity. Psychiat Res-Neuroim. 2013;214(2):109–15. https://doi.org/10.1016/j.pscychresns.2013.06.004.

    Article  Google Scholar 

  15. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol Biol Sci Med Sci. 2014;69(10):1212–26. https://doi.org/10.1093/gerona/glt177.

    Article  CAS  Google Scholar 

  16. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Investig. 2011;121(6):2111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalra P, Khan H, Singh TG, Grewal AK. Mechanistic insights on impact of Adenosine monophosphate-activated protein kinase (AMPK) mediated signalling pathways on cerebral ischemic injury. Neurosci Res. 2023;190:17–28. https://doi.org/10.1016/j.neures.2022.11.006.

    Article  CAS  PubMed  Google Scholar 

  18. Kim JY, Park JY, Kim OY, Ham BM, Kim HJ, Kwon DY, et al. Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC – Q-TOF MS). J Proteome Res. 2010;9(9):4368–75. https://doi.org/10.1021/pr100101p.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar S, Behl T, Sachdeva M, Sehgal A, Kumari S, Kumar A, et al. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life sci. 2021;264:118661. https://doi.org/10.1016/j.lfs.2020.118661.

    Article  CAS  PubMed  Google Scholar 

  20. Arora A, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, et al. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life sci. 2021;273:119311.

    Article  CAS  PubMed  Google Scholar 

  21. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010–3. https://doi.org/10.2337/db06-1656.

    Article  CAS  PubMed  Google Scholar 

  22. Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, Alcaraz-Tafalla MS, Aragón-Alonso A, Pascual-Díaz M, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22:950–5. https://doi.org/10.1007/s11695-012-0643-y.

    Article  PubMed  Google Scholar 

  23. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab.

  24. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and t umor necrosis factor α. Arterioscler Thromb Vasc Biol. 2005;25(10):2062–8. https://doi.org/10.1161/01.ATV.0000183883.72263.13.

    Article  CAS  PubMed  Google Scholar 

  25. Popko K, Gorska E, Stelmaszczyk-Emmel A, Plywaczewski R, Stoklosa A, Gorecka D, et al. Proinflammatory cytokines Il-6 and TNF-α and the development of inflammation in obese subjects. Eur J Med Res. 2010;15:1–3.

    Article  Google Scholar 

  26. Chen J, Sun D, Liu M, Zhang S, Ren C. Defibrinogen therapy for acute ischemic stroke: 1332 consecutive cases. Sci Rep. 2018;8(1):9489. https://doi.org/10.1038/s41598-018-27856-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li B, Huang Z, Meng J, Yu W, Yang H. MiR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in Neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3β pathway. Mol Cell Probes. 2020;51:101497. https://doi.org/10.1016/j.mcp.2019.101497.

    Article  CAS  PubMed  Google Scholar 

  28. Liou CJ, Wei CH, Chen YL, Cheng CY, Wang CL, Huang WC. Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice. Cell Physiol Biochem. 2018;49(5):1870–84. https://doi.org/10.1159/000493650.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu L, Chen X, Chong L, Kong L, Wen S, Zhang H, et al. Adiponectin alleviates exacerbation of airway inflammation and oxidative stress in obesity-related asthma mice partly through AMPK signaling pathway. Int Immunopharmacol. 2018;67:396–407. https://doi.org/10.1016/j.intimp.2018.12.030.

    Article  CAS  PubMed  Google Scholar 

  30. Wei LL, Chen Y, Yu QY, Wang Y, Liu G. Patchouli alcohol protects against ischemia/reperfusion-induced brain injury via inh ibiting neuroinflammation in normal and obese mice. Brain Res. 2018;1682:61–70. https://doi.org/10.1016/j.brainres.2017.12.039.

    Article  CAS  PubMed  Google Scholar 

  31. Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non -obese hypertensive mice. J Mol Cell Cardiol. 2018;123:46–57. https://doi.org/10.1016/j.yjmcc.2018.08.017.

    Article  CAS  PubMed  Google Scholar 

  32. Dang Z, Avolio E, Thomas AC, Faulkner A, Beltrami AP, Cervellin C, et al. Transfer of a human gene variant associated with exceptional longevity improves cardiac function in obese type 2 diabetic mice through induction of the SDF-1/CXCR4 signalling pathway. Eur J Heart Fail. 2020;22(9):1568–81. https://doi.org/10.1002/ejhf.1840.

    Article  CAS  PubMed  Google Scholar 

  33. Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr. 2022;5:1–23. https://doi.org/10.1080/10408398.2022.2050349.

    Article  CAS  Google Scholar 

  34. Cochain C, Zernecke A. Macrophages in vascular inflammation and atherosclerosis. Pflug Arch Eur J Physiol. 2017;469. https://doi.org/10.1007/s43440-021-00258-8. :485 – 99.

  35. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25. https://doi.org/10.1038/nature10146.

    Article  CAS  PubMed  Google Scholar 

  36. Khan H, Kaur P, Singh TG, Grewal AK, Sood S. Adenosine as a key mediator of neuronal survival in cerebral ischemic injury. Neurochem Res. 2022;47(12):3543–55. https://doi.org/10.1007/s11064-022-03737-3.

    Article  CAS  PubMed  Google Scholar 

  37. Khan H, Gupta A, Singh TG, Kaur A. Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep. 2021;73:1240–54.

    Article  CAS  PubMed  Google Scholar 

  38. Garg N, Singh TG, Khan H, Arora S, Kaur A, Mannan A. Mechanistic interventions of selected Ocimum species in management of diabetes, obesity and liver disorders: transformative developments from preclinical to clinical approaches. Biointerface Res Appl Chem. 2021;12(1):1304–23.

    Article  Google Scholar 

  39. Khan H, Sharma K, Kumar A, Kaur A, Singh TG. Therapeutic implications of cyclooxygenase (COX) inhibitors in ischemic injury. Inflamm Res. 2022;71(3):277–92. https://doi.org/10.1007/s00011-022-01546-6.

    Article  CAS  PubMed  Google Scholar 

  40. Khan H, Grewal AK, Singh TG. Mitochondrial dynamics related neurovascular approaches in cerebral ischemic injury. Mitochondrion. 2022;66:54–66. https://doi.org/10.1016/j.mito.2022.08.001.

    Article  CAS  PubMed  Google Scholar 

  41. Thayabaranathan T, Kim J, Cadilhac DA, Thrift AG, Donnan GA, Howard G, et al. Global stroke statistics 2022. Int J Stroke. 2022;17(9):946–56. https://doi.org/10.1177/17474930221123.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Haley MJ, Lawrence CB. Obesity and stroke: can we translate from rodents to patients? Cereb. Blood Flow Metab. 2016;36(12):2007–21. https://doi.org/10.1177/0271678X16670411.

    Article  CAS  Google Scholar 

  43. Garg C, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic implications of sonic hedgehog pathway in metabolic disorders: novel target for effective treatment. Pharmacol Res. 2022;179:106194. https://doi.org/10.1016/j.phrs.2022.106194.

    Article  CAS  PubMed  Google Scholar 

  44. Mohammed ME, Alshahrani S, Zaman G, Alelyani M, Hadadi I, Musa M. Lipid profile, random blood glucose and carotid arteries thickness in human male subjects with different ages and body mass indexes. Aging Male. 2020;23(5):1409–15. https://doi.org/10.1080/13685538.2020.1773424.

    Article  CAS  PubMed  Google Scholar 

  45. Kalra P, Khan H, Singh TG, Grewal AK. Mechanistic insights on impact of Adenosine monophosphate-activated protein kinase (AMPK) mediated signalling pathways on cerebral ischemic injury. Neurosci Res. https://doi.org/10.1016/j.neures.2022.11.006.

  46. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46. https://doi.org/10.1161/CIRCRESAHA.115.307611.

    Article  CAS  PubMed  Google Scholar 

  47. Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21(20):7609. https://doi.org/10.3390/ijms21207609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwata R, Casimir P, Erkol E, Boubakar L, Planque M, Gallego López IM, et al. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science. 2023;379(6632):eabn4705. https://doi.org/10.1126/science.abn4705.

    Article  CAS  PubMed  Google Scholar 

  49. Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, et al. Emerging targets for modulation of Immune response and inflammation in stroke. Neurochem Res. 2023;48(6):1663–90. https://doi.org/10.1007/s11064-023-03875-2.

    Article  CAS  PubMed  Google Scholar 

  50. de Mello AH, Costa AB, Engel JD, Rezin GT. Mitochondrial dysfunction in obesity. Life sci. 2018;192:26–32. https://doi.org/10.1016/j.lfs.2017.11.019.

    Article  CAS  PubMed  Google Scholar 

  51. Kaur A, Singh TG, Khan H, Kumar M, Singh N, Abdel-Daim MM. Neuroprotective effect of Piclamilast-Induced Post-ischemia Pharmacological Treatment in mice. Neurochem Res. 2022;47(8):2230–43. https://doi.org/10.1007/s11064-022-03609-w.

    Article  CAS  PubMed  Google Scholar 

  52. Rihal V, Khan H, Grewal AK, Singh TG. Therapeutic implication of Herbal Phytoconstituents in Alzheimer’s Disease. J Pharm Technol Res.

  53. Kim Y, Kim CK, Jung S, Yoon BW, Lee SH. Obesity-stroke paradox and initial neurological severity. J Neurol Neurosurg Psychiatry. 2015;86(7):743–7. https://doi.org/10.1136/jnnp-2014-308664.

    Article  PubMed  Google Scholar 

  54. Stenlöf K, Wernstedt I, Fjällman T, Wallenius V, Wallenius K, Jansson JO. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab. 2003;88(9):4379–83. https://doi.org/10.1210/jc.2002-021733.

  55. Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol. 2020;72(11):1513–27. https://doi.org/10.1111/jphp.13336.

    Article  CAS  PubMed  Google Scholar 

  56. Haley MJ, White CS, Roberts D, O’Toole K, Cunningham CJ, Rivers-Auty J, et al. Stroke induces prolonged changes in lipid metabolism, the liver and body composition in mice. Transl Stroke Res. 2020;11:837–50. https://doi.org/10.1007/s12975-019-00763-2.

    Article  CAS  PubMed  Google Scholar 

  57. Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. J Ethnopharmacol. 2023;17:117153. https://doi.org/10.1016/j.jep.2023.117153.

    Article  CAS  Google Scholar 

  58. Delahanty LM. Evidence-based trends for achieving weight loss and increased physical activity: applications for diabetes prevention and treatment. Diabetes Spectr. 2002;15(3):183–9.

    Article  Google Scholar 

  59. Huo X, Ma G, Tong X, Zhang X, Pan Y, Nguyen TN, et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med. 2023;388(14):1272–83. https://doi.org/10.1056/NEJMoa2213379.

    Article  CAS  PubMed  Google Scholar 

  60. Liu X, Yang M, Lei F, Wang Y, Yang M, Mao C. Highly effective stroke therapy enabled by genetically engineered viral nanofibers. Adv Mater. 2022;34(20):2201210. https://doi.org/10.1002/adma.202201210.

    Article  CAS  Google Scholar 

  61. Kurukulasuriya LR, Govindarajan G, Sowers J. Stroke prevention in diabetes and obesity. Expert Rev Cardiovasc2022 May. 2022;4(4):487–502. https://doi.org/10.1586/14779072.4.4.487.

    Article  Google Scholar 

  62. Leong SC, Tang YM, Toh FM, Fong KN. Examining the effectiveness of virtual, augmented, and mixed reality (VAMR) therapy for upper limb recovery and activities of daily living in stroke patients: a systematic review and meta-analysis. J Neuroeng Rehabil. 2022;19(1):1–20. https://doi.org/10.1186/s12984-022-01071-x.

    Article  Google Scholar 

  63. Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: potential neuroprotective agents in ischemic injury. Life Sci. 2022;288:120186. https://doi.org/10.1016/j.lfs.2021.120186.

    Article  CAS  PubMed  Google Scholar 

  64. Segura T, Calleja S, Jordan J. Recommendations and treatment strategies for the management of acute ischemic stroke. Expert Opin Pharmacother. 2008;9(7):1071–85.

    Article  CAS  PubMed  Google Scholar 

  65. Ogawa A, The, MELT Japan Study Group. Randomized trial of intraarterial infusion of urokinase within 6 hours of middle cerebral artery stroke: the middle cerebral artery embolism local fibrinolytic intervention trial (MELT) Japan. Stroke. 2007;38:2633–9. https://doi.org/10.1161/STROKEAHA.107.488551.

    Article  CAS  PubMed  Google Scholar 

  66. Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, et al. Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study: a randomized controlled trial. JAMA. 1999;282(21):2003–11. https://doi.org/10.1001/jama.282.21.200.

    Article  CAS  PubMed  Google Scholar 

  67. Hao Z, Liu M, Counsell C, Wardlaw JM, Lin S, Zhao X. Fibrinogen depleting agents for acute ischaemic stroke. Cochrane Database Syst Rev (3). https://doi.org/10.1002/14651858.CD000091.pub2.

  68. Levy DE, Trammel J, Wasiewski WW, Ancrod Stroke Program (ASP) Study Team. Ancrod for acute ischemic stroke: a ne w dosing regimen derived from analysis of prior ancrod stroke studies. J Stroke Cerebrovasc Dis. 2009;18(1):23–7. https://doi.org/10.1016/j.jstrokecerebrovasdis.2008.07.009.

    Article  PubMed  Google Scholar 

  69. Tiwari P, Khan H, Singh TG, Grewal AK. Poly (ADP-ribose) polymerase: an overview of mechanistic approaches and therapeutic opportunities in the management of stroke. Neurochem Res. 2022;47(7):1830–52. https://doi.org/10.1007/s11064-022-03595-z.

    Article  CAS  PubMed  Google Scholar 

  70. Thapa K, Khan H, Kanojia N, Singh TG, Kaur A, Kaur G. Therapeutic insights on ferroptosis in Parkinson’s disease. Eur J Pharmacol. 2022;2:175133. https://doi.org/10.1016/j.ejphar.2022.175133.

    Article  CAS  Google Scholar 

  71. Khan H, Gupta A, Singh TG, Kaur A. Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol Rep. 2021;73:1240–54. https://doi.org/10.1007/s43440-021-00258-8.

    Article  CAS  PubMed  Google Scholar 

  72. Khan H, Grewal AK, Singh TG. Pharmacological postconditioning by Protocatechuic Acid attenuates Brain Injury in Ischemia–Reperfusion (I/R) mice Model: implications of nuclear factor erythroid-2-Related factor pathway. Neuroscience. 2022;491:23–31. https://doi.org/10.1016/j.neuroscience.2022.03.016.

    Article  CAS  PubMed  Google Scholar 

  73. Garcia-Diaz DF, Lopez-Legarrea P, Quintero P, Martinez JA. Vitamin C in the treatment and/or prevention of obesity. J Nutr Sci Vitaminol. 2014;60(6):367–79. https://doi.org/10.3177/jnsv.60.367.

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y, Lin W, Zhong L, Fang Z, Ye B, Wang Z, Chattipakorn N, et al. Bicyclol attenuates obesity-induced cardiomyopathy via inhibiting NF-κB and MAPK signaling pathways. Cardiovasc Drugs Ther. 2022;24:1–1. https://doi.org/10.1007/s10557-022-07356-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Heena Khan was involved in writing––original draft preparation and revising; Thakur Gurjeet Singh supervision; Chanchal Tiwari, Palak Kalra and Daksha Vyas were involved in writing––original draft preparation; Amarjot Kaur Grewal, Thakur Gurjeet Singh performed reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Consent to Publish

Not applicable.

Conflict of interest

All the authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Tiwari, C., Kalra, P. et al. Mechanistic correlation of molecular pathways in obesity-mediated stroke pathogenesis. Pharmacol. Rep 76, 463–474 (2024). https://doi.org/10.1007/s43440-024-00590-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-024-00590-9

Keywords

Navigation