Skip to main content
Log in

The impact of IL-10 and CYP3A5 gene polymorphisms on dose-adjusted trough blood tacrolimus concentrations in early post-renal transplant recipients

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

A Correction to this article was published on 24 March 2022

This article has been updated

Abstract

Background

The strong inter-individual pharmacokinetic variability and the narrow therapeutic window of tacrolimus (TAC) have hampered the clinical application. Gene polymorphisms play an important role in TAC pharmacokinetics. Here, we investigate the influence of genotypes of IL-10, CYP3A5, CYP2C8, and ABCB1 on dose-adjusted trough blood concentrations (the C0/D ratio) of TAC to reveal unclear genetic factors that may affect TAC dose requirements for renal transplant recipients.

Methods

Genetic polymorphisms of IL-10, CYP3A5, CYP2C8, and ABCB1 in 188 renal transplant recipients were determined using Kompetitive Allele Specific PCR (KASP). Statistical analysis was applied to examine the effect of genetic variation on the TAC C0/D at 5, 10, 15, and 30 days after transplantation.

Results

Recipients carrying the IL-10 -819C > T TT genotype showed a significantly higher TAC C0/D than those with the TC/CC genotype (p < 0.05). Additionally, the TAC C0/D values of recipients with the capacity for low IL-10 activity (-819 TT) engrafted with CYP3A5 non-expressers were higher compared to the intermediate/high activity of IL-10 -819C > T TC or CC carrying CYP3A5 expressers, and the difference was statistically significant at different time points (p < 0.05).

Conclusions

Genetic polymorphisms of IL-10 -819C > T and CYP3A5 6986A > G influence the TAC C0/D, which may contribute to variation in TAC dose requirements during the early post-transplantation period. Detecting IL-10 -819C > T and CYP3A5 6986A > G polymorphisms may allow determination of individualized tacrolimus dosage regimens for renal transplant recipients during the early post-transplantation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Lim WH, Au E, Krishnan A, Wong G. Assessment of kidney transplant suitability for patients with prior cancers: is it time for a rethink. Transpl Int. 2019;32(12):1223–40.

    Article  PubMed  Google Scholar 

  2. Oberbauer R, Bestard O, Furian L, Maggiore U, Pascual J, Rostaing L, et al. Optimization of tacrolimus in kidney transplantation: New pharmacokinetic perspectives. Transplant Rev (Orlando). 2020;34(2):100531.

    Article  Google Scholar 

  3. Lancia P, Jacqz-Aigrain E, Zhao W. Choosing the right dose of tacrolimus. Arch Dis Child. 2015;100(4):406–13.

    Article  PubMed  Google Scholar 

  4. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29(6):404–30.

    Article  CAS  PubMed  Google Scholar 

  5. Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier MC, Bellissant E. Pharmacogenetics of membrane transporters of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2019;58(5):593–613.

    Article  PubMed  Google Scholar 

  6. Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, et al. therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41(3):261–307.

    Article  CAS  PubMed  Google Scholar 

  7. Gonzales HM, McGillicuddy JW, Rohan V, Chandler JL, Nadig SN, Dubay DA, et al. A comprehensive review of the impact of tacrolimus intrapatient variability on clinical outcomes in kidney transplantation. Am J Transplant. 2020;20(8):1969–83.

    Article  CAS  PubMed  Google Scholar 

  8. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014;53(2):123–39.

    Article  CAS  PubMed  Google Scholar 

  9. Liu MZ, He HY, Zhang YL, Hu YF, He FZ, Luo JQ, et al. IL-3 and CTLA4 gene polymorphisms may influence the tacrolimus dose requirement in Chinese kidney transplant recipients. Acta Pharmacol Sin. 2017;38(3):415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohamed ME, Schladt DP, Guan W, Wu B, van Setten J, Keating BJ, et al. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: a comparison of four ancestry groups. Am J Transplant. 2019;19(10):2795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenom J. 2020;20(4):553–62.

    Article  CAS  Google Scholar 

  12. Campagne O, Mager DE, Brazeau D, Venuto RC, Tornatore KM. Tacrolimus population pharmacokinetics and multiple CYP3A5 genotypes in black and white renal transplant recipients. J Clin Pharmacol. 2018;58(9):1184–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campagne O, Mager DE, Tornatore KM. Population pharmacokinetics of tacrolimus in transplant recipients: what did we learn about sources of interindividual variabilities. J Clin Pharmacol. 2019;59(3):309–25.

    Article  CAS  PubMed  Google Scholar 

  14. Naushad SM, Pavani A, Rupasree Y, Hussain T, Alrokayan SA, Kutala VK. Recipient ABCB1, donor and recipient CYP3A5 genotypes influence tacrolimus pharmacokinetics in liver transplant cases. Pharmacol Rep. 2019;71(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  15. Vanhove T, de Jonge H, de Loor H, Oorts M, de Hoon J, Pohanka A, et al. Relationship between in vivo CYP3A4 Activity, CYP3A5 genotype, and systemic tacrolimus metabolite/parent drug ratio in renal transplant recipients and healthy volunteers. Drug Metab Dispos. 2018;46(11):1507–13.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Zheng M, Yang H, Han Z, Tao J, Chen H, et al. Association of genetic variants in CYP3A4, CYP3A5, CYP2C8, and CYP2C19 with tacrolimus pharmacokinetics in renal transplant recipients. Curr Drug Metab. 2019;20(7):609–18.

    Article  CAS  PubMed  Google Scholar 

  17. de Jonge H, Kuypers DR. Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant Rev (Orlando). 2008;22(1):6–20.

    Article  Google Scholar 

  18. Rojas LE, Herrero MJ, Bosó V, García-Eliz M, Poveda JL, Librero J, et al. Meta-analysis and systematic review of the effect of the donor and recipient CYP3A5 6986A>G genotype on tacrolimus dose requirements in liver transplantation. Pharmacogenet Genom. 2013;23(10):509–17.

    Article  CAS  Google Scholar 

  19. Zhang X, Xu J, Fan J, Zhang T, Li Y, Xie B, et al. Influence of IL-18 and IL-10 polymorphisms on tacrolimus elimination in chinese lung transplant patients. Dis Marker. 2017;2017:7834035.

    Article  Google Scholar 

  20. Kasamatsu T, Saitoh T, Ino R, Gotoh N, Mitsui T, Shimizu H, et al. Polymorphism of IL-10 receptor β affects the prognosis of multiple myeloma patients treated with thalidomide and/or bortezomib. Hematol Oncol. 2017;35(4):711–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kim DH, Lee NY, Sohn SK, Baek JH, Kim JG, Suh JS, et al. IL-10 promoter gene polymorphism associated with the occurrence of chronic GVHD and its clinical course during systemic immunosuppressive treatment for chronic GVHD after allogeneic peripheral blood stem cell transplantation. Transplantation. 2005;79(11):1615–22.

    Article  CAS  PubMed  Google Scholar 

  22. Kalsotra A, Anakk S, Brommer CL, Kikuta Y, Morgan ET, Strobel HW. Catalytic characterization and cytokine mediated regulation of cytochrome P450 4Fs in rat hepatocytes. Arch Biochem Biophys. 2007;461(1):104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang X, Wang Z, Fan J, Liu G, Peng Z. Impact of interleukin-10 gene polymorphisms on tacrolimus dosing requirements in Chinese liver transplant patients during the early posttransplantation period. Eur J Clin Pharmacol. 2011;67(8):803–13.

    Article  CAS  PubMed  Google Scholar 

  24. Li D, Lu W, Zhu JY, Gao J, Lou YQ, Zhang GL. Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. J Clin Pharm Ther. 2007;32(5):505–15.

    Article  CAS  PubMed  Google Scholar 

  25. Li D, Zhu JY, Gao J, Wang X, Lou YQ, Zhang GL. Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus. Clin Chim Acta. 2007;383(1–2):133–9.

    Article  CAS  PubMed  Google Scholar 

  26. Li CJ, Li L, Lin L, Jiang HX, Zhong ZY, Li WM, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS ONE. 2014;9(1):e86206.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Genvigir F, Nishikawa AM, Felipe CR, Tedesco-Silva H Jr, Oliveira N, Salazar A, et al. Influence of ABCC2, CYP2C8, and CYP2J2 polymorphisms on tacrolimus and mycophenolate sodium-based treatment in brazilian kidney transplant recipients. Pharmacotherapy. 2017;37(5):535–45.

    Article  CAS  PubMed  Google Scholar 

  28. Deng R, Liao Y, Li Y, Tang J. Association of CYP3A5, CYP2C8, and ABCB1 polymorphisms with early renal injury in chinese liver transplant recipients receiving tacrolimus. Transplant Proc. 2018;50(10):3258–65.

    Article  CAS  PubMed  Google Scholar 

  29. Hu R, Barratt DT, Coller JK, Sallustio BC, Somogyi AA. CYP3A5*3 and ABCB1 61A>G significantly influence dose-adjusted trough blood tacrolimus concentrations in the first three months post-kidney transplantation. Basic Clin Pharmacol Toxicol. 2018;123(3):320–6.

    Article  CAS  PubMed  Google Scholar 

  30. Provenzani A, Santeusanio A, Mathis E, Notarbartolo M, Labbozzetta M, Poma P, et al. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol. 2013;19(48):9156–73.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ponticelli C, Arnaboldi L, Moroni G, Corsini A. Treatment of dyslipidemia in kidney transplantation. Expert Opin Drug Saf. 2020;19(3):257–67.

    Article  CAS  PubMed  Google Scholar 

  32. Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, et al. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol. 2020;16(9):769–82.

    Article  CAS  PubMed  Google Scholar 

  33. Yamada T, Zhang M, Masuda S. Significance of ethnic factors in immunosuppressive therapy management after organ transplantation. Ther Drug Monit. 2020;42(3):369–80.

    Article  PubMed  Google Scholar 

  34. Jouve T, Noble J, Rostaing L, Malvezzi P. An update on the safety of tacrolimus in kidney transplant recipients, with a focus on tacrolimus minimization. Expert Opin Drug Saf. 2019;18(4):285–94.

    Article  CAS  PubMed  Google Scholar 

  35. Schutte-Nutgen K, Tholking G, Suwelack B, Reuter S. Tacrolimus—pharmacokinetic considerations for clinicians. Curr Drug Metab. 2018;19(4):342–50.

    Article  CAS  PubMed  Google Scholar 

  36. Thölking G, Reuter S. Commentary: the clinical impact of the C0/D ratio and the CYP3A5 genotype on outcome in tacrolimus treated kidney transplant recipients. Front Pharmacol. 2021;12:603345.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Buendía JA, Halac E, Bosaleh A, Garcia de Davila MT, Imvertasa O, Bramuglia G. Frequency of CYP3A5 genetic polymorphisms and tacrolimus pharmacokinetics in pediatric liver transplantation. pharmaceutics. 2020;12(9):898–905.

  38. Zhang M, Tajima S, Shigematsu T, Fu R, Noguchi H, Kaku K, et al. Donor CYP3A5 gene polymorphism alone cannot predict tacrolimus intrarenal concentration in renal transplant recipients. Int J Mol Sci. 2020;21(8):2976–87.

  39. Mendrinou E, Mashaly ME, Al Okily AM, Mohamed ME, Refaie AF, Elsawy EM, et al. CYP3A5 gene-guided tacrolimus treatment of living-donor Egyptian kidney transplanted patients. Front Pharmacol. 2020;11:1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suetsugu K, Mori Y, Yamamoto N, Shigematsu T, Miyamoto T, Egashira N, et al. Impact of CYP3A5, POR, and CYP2C19 polymorphisms on trough concentration to dose ratio of tacrolimus in allogeneic hematopoietic stem cell transplantation. Int J Mol Sci. 2019;20(10):2413–29.

  41. Nakamura T, Fukuda M, Matsukane R, Suetsugu K, Harada N, Yoshizumi T, et al. Influence of POR*28 polymorphisms on CYP3A5*3-associated variations in tacrolimus blood levels at an early stage after liver transplantation. Int J Mol Sci. 2020;21(7):2287–304.

  42. Ling J, Dong LL, Yang XP, Qian Q, Jiang Y, Zou SL, et al. Effects of CYP3A5, ABCB1 and POR*28 polymorphisms on pharmacokinetics of tacrolimus in the early period after renal transplantation. Xenobiotica. 2020;50(12):1501–9.

    Article  CAS  PubMed  Google Scholar 

  43. Chang WS, Liao CH, Tsai CW, Hu PS, Wu HC, Hsu SW, et al. The role of IL-10 promoter polymorphisms in renal cell carcinoma. Anticancer Res. 2016;36(5):2205–9.

    CAS  PubMed  Google Scholar 

  44. Thakkinstian A, Dmitrienko S, Gerbase-Delima M, McDaniel DO, Inigo P, Chow KM, et al. Association between cytokine gene polymorphisms and outcomes in renal transplantation: a meta-analysis of individual patient data. Nephrol Dial Transplant. 2008;23(9):3017–23.

    Article  CAS  PubMed  Google Scholar 

  45. Xiong J, Wang Y, Zhang Y, Nie L, Wang D, Huang Y, et al. Lack of association between interleukin-10 gene polymorphisms and graft rejection risk in kidney transplantation recipients: a meta-analysis. PLoS ONE. 2015;10(6):e0127540.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mu HJ, Xie P, Chen JY, Gao F, Zou J, Zhang J, et al. Association of TNF-α, TGF-β1, IL-10, IL-6, and IFN-γ gene polymorphism with acute rejection and infection in lung transplant recipients. Clin Transplant. 2014;28(9):1016–24.

    Article  CAS  PubMed  Google Scholar 

  47. Bogacz A, Polaszewska A, Bartkowiak-Wieczorek J, Tejchman K, Dziewanowski K, Ostrowski M, et al. The effect of genetic variations for interleukin-10 (IL-10) on the efficacy of immunosuppressive therapy in patients after kidney transplantation. Int Immunopharmacol. 2020;89(Pt A):107059.

    Article  CAS  PubMed  Google Scholar 

  48. Gorski JC, Hall SD, Becker P, Affrime MB, Cutler DL, Haehner-Daniels B. In vivo effects of interleukin-10 on human cytochrome P450 activity. Clin Pharmacol Ther. 2000;67(1):32–43.

    Article  CAS  PubMed  Google Scholar 

  49. Oetting WS, Wu B, Schladt DP, Guan W, Remmel RP, Dorr C, et al. Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics. 2018;19(3):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet. 2007;22(5):328–35.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang T, Liu Y, Zeng R, Ling Q, Wen P, Fan J, et al. Association of donor small ubiquitin-like modifier 4 rs237025 genetic variant with tacrolimus elimination in the early period after liver transplantation. Liver Int. 2018;38(4):724–32.

    Article  CAS  PubMed  Google Scholar 

  52. Ou B, Liu Y, Zhang T, Sun Y, Chen J, Peng Z. TLR9 rs352139 genetic variant promotes tacrolimus elimination in chinese liver transplant patients during the early posttransplantation period. Pharmacotherapy. 2019;39(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  53. Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D, et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics. 2011;12(10):1383–96.

    Article  CAS  PubMed  Google Scholar 

  54. Pallet N, Jannot AS, El Bahri M, Etienne I, Buchler M, de Ligny BH, et al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. Am J Transplant. 2015;15(3):800–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Post doctoral Science Foundation (NO: 2019M662207), Anhui Natural Science Fund Project (1908085QH363).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Aizong Shen.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to an error in the affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Cheng, X., Zhang, L. et al. The impact of IL-10 and CYP3A5 gene polymorphisms on dose-adjusted trough blood tacrolimus concentrations in early post-renal transplant recipients. Pharmacol. Rep 73, 1418–1426 (2021). https://doi.org/10.1007/s43440-021-00288-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00288-2

Keywords

Navigation