Skip to main content

Advertisement

Log in

α2-Adrenoceptor agonist induces peripheral antinociception via the endocannabinoid system

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Xylazine is an α2 adrenoceptor agonist that is extensively used in veterinary medicine and animal experimentation procedures to produce analgesia, sedation and muscle relaxation without causing general anesthesia. Considering the lack of knowledge of the mechanisms involved in peripheral antinociception induced by xylazine and the potential interactions between the adrenergic and endocannabinoid systems, the present study investigated the contribution of the latter system in the mechanism of xylazine.

Methods

The rat paw pressure test, in which hyperalgesia was induced by the intraplantar injection of prostaglandin E2, was performed.

Results

Xylazine administered via an intraplantar injection (25, 50 and 100 μg) induced a peripheral antinociceptive effect against prostaglandin E2 (2 μg)-induced hyperalgesia. This effect was blocked by treatment with the selective CB1 cannabinoid antagonist AM251 (20, 40 and 80 μg) but not by the selective CB2 cannabinoid antagonist AM630 (100 μg). The anandamide reuptake inhibitor VDM11 (2.5 μg) intensified the peripheral antinociceptive effect of a submaximal dose of xylazine (25 μg), and the inhibitor of endocannabinoid enzymatic hydrolysis, MAFP (0.5 μg), showed a tendency towards this same effect. In addition, liquid-chromatography mass spectrometric analysis indicated that xylazine (100 μg) treatment was associated with an increase in anandamide levels in the rat paws treated with PGE2.

Conclusions

The present results provides evidence that the peripheral antinociceptive effect of the α2 adrenoceptor agonist xylazine probably results from anandamide release and subsequent CB1 cannabinoid receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Willian WMIII, John AEH, Roman TS, Richard MB. Fármacos usados na medicação pré-anestésica. In: Willian WMIII Manual de anestesia veterinária. Proc Artmed, 3ª ed, Porto Alegre; 2001. pp. 31–44.

  2. Kroneberg G, Oberdorf A, Hoffmeiter F, Wirth W. On the pharmacology of 2-(2,6-dimethylphenylamino)-4H-5,6-dihydro-1,3-thiazine (Bayer 1470), a substance inhibitory for adrenergic and cholinergic neurons. Naunyn Schmiedebergs Arch Pharmacol Exp Pathol. 1967;256:257–80.

    Article  CAS  Google Scholar 

  3. Hsu WH. Xylazine-induced depression and its antagonism by alpha adrenergic blocking agents. J Pharmacol Exp Ther. 1981;218:188–92.

    CAS  PubMed  Google Scholar 

  4. Fürst S. Transmitters involved in antinociception in the spinal cord. Brain Res Bull. 1999;48:129–41.

    Article  PubMed  Google Scholar 

  5. Tham SM, Angus JA, Tudor EM, Wright CE. Synergistic and additive interactions of the cannabinoid agonist CP55,940 with mu opioid receptor and alpha2-adrenoceptor agonists in acute pain models in mice. Br J Pharmacol. 2005;144:875–84.

    Article  CAS  PubMed  Google Scholar 

  6. Yoon MH, Choi JI. Pharmacologic interaction between cannabinoid and either clonidine or neostigmine in the rat formalin test. Anesthesiology. 2003;99:701–7.

    Article  CAS  PubMed  Google Scholar 

  7. Yaksh TL. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav. 1985;22:845–58.

    Article  CAS  PubMed  Google Scholar 

  8. Reis GM, Ramos MA, Pacheco DF, Klein A, Perez AC, Duarte ID. Endogenous cannabinoid receptor agonist anandamide induces peripheral antinociception by activation of ATP-sensitive K+ channels. Life Sci. 2001;88:653–7.

    Article  CAS  Google Scholar 

  9. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002;54:161–202.

  10. Khodayar MJ, Shafaghi B, Naderi N, Zarrindast MR. Antinociceptive effect of spinally administered cannabinergic and 2-adrenoceptor drugs on the formalin test in rat: possible interactions. J Psychopharmacol. 2006;20:67–74.

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira RCM, Castor MGM, Piscitelli F, Di Marzo V, Duarte IDG. Romero TRL the involvement of the endocannabinoid system in the peripheral antinociceptive action of ketamine. J Pain. 2018;19:487–95.

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann M. Ethical guidelines for investigation of experimental pain in conscious animals. Pain. 1983;16:109–10.

    Article  CAS  PubMed  Google Scholar 

  13. Randall LO, Sellito JJ. A method for measurement of analgesic activity on inflamed tissues. Arch Int Pharmacodyn Ther. 1957;111:409–19.

    CAS  PubMed  Google Scholar 

  14. Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem. 1997;272:3315–23.

    Article  CAS  PubMed  Google Scholar 

  15. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science. 2003;302:84–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bentley GA, Copeland IW, Starr J. The actions of some alpha-adrenoceptor agonists and antagonists in an antinociceptive test in mice. Clin Exp Pharmacol Physiol. 1977;4:405.

    Article  CAS  PubMed  Google Scholar 

  17. Naves LA, Freire AC. Xylazine antinociception in mice: evidence for mediation by postsynaptic adrenoceptors. Braz J Med Biol Res. 1989;22:1009–100.

    CAS  PubMed  Google Scholar 

  18. Goodchild CS, Guo Z, Davies A, Gent JP. Antinociceptive actions of intratecal xylazine: interations with spinal cord opioid pathways. Br J Anaesth. 1996;76:544–51.

    Article  CAS  PubMed  Google Scholar 

  19. Schmitt H, Le Douarec JC, Petillot N. The antinociceptive effect of some alpha-sympathomimetic agents. Neuropharmacology. 1974;13:289–94.

    Article  CAS  PubMed  Google Scholar 

  20. Gold MS, Dastmalchi S, Levine JD. α2-Adrenergic receptor subtypes in rat dorsal root and superior cervical ganglion neurons. Pain. 1997;69:179–90.

    Article  CAS  PubMed  Google Scholar 

  21. Romero TRL, Perez AC, Francischi JN, Duarte IDG. Probable involvement of α2C-adrenoceptor subtype and endogenous opioid peptides in the peripheral antinociceptive effect induced by Xylazine. Eur J Pharmacol. 2009;608:23–7.

    Article  PubMed  CAS  Google Scholar 

  22. Ferreira SH. Prostaglandins, aspirin like drugs and analgesia. Nature (New Biol). 1972;240:200–3.

    Article  CAS  Google Scholar 

  23. Bevan S. Nociceptive peripheral neurons: cellular properties. In: Melzack R, Wall D 4 Eds.), Textbook of pain, Churchill Livingstone 4ª ed, London; 1999. pp. 85–103.

  24. Vinegar R, Truax JF, Selph JL, Johnston PR, Venable AL, McKenzie KK. Pathway to carrageenan-induced inflammation in the hind limb of the rat. Fed Proc. 1987;46:118–26.

    CAS  PubMed  Google Scholar 

  25. Soares AC, Leite R, Tatsuo MA, Duarte ID. Activation of ATP-sensitive K(+) channels: mechanism of peripheral antinociceptive action of the nitric oxide donor, sodium nitroprusside. Eur J Pharmacol. 2000;400:67–71.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura M, Ferreira SH. Peripheral analgesic action of clonidine: mediation by release of endogenous enkephalin-like substances. Eur J Pharmacol. 1988;146:223–8.

    Article  CAS  PubMed  Google Scholar 

  27. Khasar SG, Green PG, Chou B, Levine DJ. Peripheral nociceptive effects of α2-adrenergic receptor agonist in the rat. Neuroscience. 1995;66:427–32.

    Article  CAS  PubMed  Google Scholar 

  28. Bentley GA, Newton SH, Jennifer S. Studies on the antinociceptive action of α-agonist drugs and their interactions with opioid mechanisms. Br J Pharmacol. 1983;79:125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson SE, Porrino LJ. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology. 2004;1:345–58.

    Article  CAS  Google Scholar 

  30. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–5.

    Article  CAS  PubMed  Google Scholar 

  31. Malan TP, Ibrahim MM, Deng H, Liu Q, Mata HP, Vanderah T. CB2 cannabinoid receptor-mediated peripheral antinociception. Pain. 2001;93:239–45.

    Article  CAS  PubMed  Google Scholar 

  32. Clayton N, Marshall FH, Bountra C, O'Shaughnessy CT. CB1 and CB2 cannabinoid receptors are implicated in inflammatory pain. Pain. 2002;96:253–60.

    Article  CAS  PubMed  Google Scholar 

  33. Quartilho A, Mata HP, Ibrahim MM, Vanderah TW, Porreca F, Makriyannis A, et al. Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors. Anesthesiology. 2003;99:955–60.

    Article  CAS  PubMed  Google Scholar 

  34. Ibrahim MM, Porreca F, Lai J, Albrecht PJ, Rice FL, Khodorova A, et al. CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids. Proc Natl Acad Sci USA. 2005;102:3093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero TRL, Resende LC, Guzzo LS, Duarte ID. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. Anesth Analg. 2013;116:463–72.

    Article  CAS  PubMed  Google Scholar 

  36. Di Marzo V. Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol. 2006;160:1–24.

    Article  CAS  Google Scholar 

  37. Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov. 2008;7:438–55.

    Article  PubMed  CAS  Google Scholar 

  38. Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of highaffinity anandamide transport, as revealed by selective inhibition. Science. 1997;277:1094–7.

    Article  CAS  PubMed  Google Scholar 

  39. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279:5298–305.

    Article  CAS  PubMed  Google Scholar 

  40. Kim J, Isokawa M, Ledent C, Alger BE. Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. J Neurosci. 2002;22:1182–91.

    Google Scholar 

  41. Schallreuter KU, Körner C, Pittelkow MR, Swanson NN, Gardner ML. The induction of the alpha-1-adrenoceptor signal transduction system on human melanocytes. Exp Dermatol. 1996;5:20–3.

    Article  CAS  PubMed  Google Scholar 

  42. McSwigan JD, Hanson DR, Lubiniecki A, Heston LL, Sheppard JR. Down syndrome fibroblasts are hyperresponsive to beta-adrenergic stimulation. Proc Natl Acad Sci USA. 1981;78:7670–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gillbro JM, Marles LK, Hibberts NA, Schallreuter KU. Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol. 2004;123:346–53.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson M. Beta2-adrenoceptors: mechanisms of action of beta2-agonists. Paediatr Respir Rev. 2001;2:57–62.

    CAS  PubMed  Google Scholar 

  45. Steenhuis P, Huntley RE, Gurenko Z, Yin L, Dale BA, Fazel N, et al. Adrenergic signaling in human oral keratinocytes and wound repair. J Dent Res. 2011;90:86–192.

    Article  CAS  Google Scholar 

  46. Maccarrone M, Di Rienzo M, Battista N, Gasperi V, Guerrieri P, Rossi A, et al. The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem 2003;278:3896–903.

  47. Pacheco DF, Klein A, Perez AC, Pacheco FCM, Francischi JN, Duarte ID. The mu-opioid receptor agonist morphine, but not agonists at delta- or kappa-opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors. Br J Pharmacol. 2008;154:1143–9.

    Article  CAS  Google Scholar 

  48. Binder W, Mousa SA, Sitte NA, Kaiser M, Stein C, Schäfer M. Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue. Eur J Neurosci. 2004;20:92–100.

    Article  PubMed  Google Scholar 

  49. Maisel AS, Knowlton KU, Fowler P, Rearden A, Ziegler MG, Motulsky HJ, et al. Adrenergic control of circulating lymphocyte subpopulations. Effects of congestive heart failure, dynamic exercise, and terbutaline treatment. J Clin Invest 1990;85:462–7.

  50. Kohm AP, Sanders VM. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev. 2001;53:487–525.

    CAS  PubMed  Google Scholar 

  51. Sanders VM, Straub RH. Norepinephrine, the beta-adrenergic receptor, and immunity. Brain Behav Immun. 2007;16:290–332.

    Article  CAS  Google Scholar 

  52. Pestonjamasp VK, Burstein SH. Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system. Biochim Biophys Acta. 1998;1394:249–60.

    Article  CAS  PubMed  Google Scholar 

  53. Mnich SJ, Hiebsch RR, Huff RM, Muthian S. Anti-inflammatory properties of CB1-receptor antagonist involves beta2 adrenoceptors. J Pharmacol Exp Ther. 2010;333:445–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TRLR would like to thank the financial support from Fundação de Amparo a Pesquisa de Minas Gerais—FAPEMIG—PPMFAPEMIG 2015 Process no 00474-15. MGMC would like to thank the financial support from Fundação de Amparo a Pesquisa de Minas Gerais—FAPEMIG—UNIVERSAL Process no 01307-14. TRLR would like to thank the Fellowships by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Roberto Lima Romero.

Ethics declarations

Conflict of interest

The authors inform non conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, T.R.L., Miranda e Castor, M.G., Parrella, C. et al. α2-Adrenoceptor agonist induces peripheral antinociception via the endocannabinoid system. Pharmacol. Rep 72, 96–103 (2020). https://doi.org/10.1007/s43440-019-00053-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00053-6

Keywords

Navigation