Skip to main content
Log in

Development of high-performance nitrile hydratase whole-cell catalyst by automated structure- and sequence-based design and mechanism insights

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Nitrile hydratase (NHase) is a metalloenzyme that catalyzes the conversion of nitrile to amide and is widely used in the biocatalysis of bulk chemicals such as acrylamide and nicotinamide. Improving the thermostability, activity, and soluble expression of natural NHase is crucial for its industrial application. However, conventional engineering strategies are often based on the design and evaluation of single-point mutations, followed by multiple rounds of iterative combinations, which are inefficient and difficult to predict the evolutionary direction of the combinatorial mutations due to epistatic effects. In this study, we used PROSS, an automated design tool based on structural and sequence information, to design a thermophilic NHase from Pseudonocardia thermophila JCM3095 (PtNHase). By sequentially applying subunit-independent mutations, subunit-synergistic mutations, and single-point revertant mutations, we obtained the superior mutant A2B1–β221. This mutant exhibited 1.4-fold and 2.3-fold higher activity towards acrylonitrile and 3-cyanopyridine, respectively, compared to the wild type. Additionally, A2B1–β221 showed a significant enhancement in thermostability. Moreover, benefiting from the enhanced soluble expression, a high-performance whole-cell catalyst for NHase was obtained. Furthermore, conventional molecular dynamics simulations and metadynamics simulations were employed to resolve the molecular mechanisms underlying the high activity and thermostability of A2B1–β221. This study not only provided highly efficient whole-cell catalyst for NHase, but also demonstrated the efficacy of utilizing automated design tools and molecular dynamics simulations in the engineering of heterologous multimeric proteins, offering valuable insights into their applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Cheng ZY, Xia YY, Zhou ZM. Recent advances and promises in nitrile hydratase: from mechanism to industrial applications. Front Bioeng Biotechnol. 2020;8:352. https://doi.org/10.3389/fbioe.2020.00352.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bhalla TC, Kumar V, Kumar V, Thakur N, Savitri. Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol. 2018;185: 925–946. https://doi.org/10.1007/s12010-018-2705-7.

  3. Foerstner KU, Doerks T, Muller J, Raes J, Bork P. A nitrile hydratase in the eukaryote Monosiga brevicollis. Plos One. 2008;3: e3976. https://doi.org/10.1371/journal.pone.0003976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo JL, Cheng ZY, Zhou ZM. An archaeal nitrile hydratase from the halophilic archaeon A07HB70 exhibits high tolerance to 3-cyanopyridine and nicotinamide. Protein Expression and Purification. 2024;214: 106390. https://doi.org/10.1016/j.pep.2023.106390.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez S, Yang XH, Bennett B, Holz RC. A cobalt-containing eukaryotic nitrile hydratase. Biochim Biophys Acta-Proteins Proteomics. 1865;1865:107–12. https://doi.org/10.1016/j.bbapap.2016.09.013.

    Article  CAS  Google Scholar 

  6. Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangilinan J, Lindquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F, Burson AM, Marcoval MA, Tang YZ, LeCleir GR, Coyne KJ, Berg GM, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA. 2011;108:4352–7. https://doi.org/10.1073/pnas.1016106108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Supreetha K, Rao SN, Srividya D, Anil HS, Kiran S. Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol Biol Rep. 2019;46:4661–73. https://doi.org/10.1007/s11033-019-04811-w.

    Article  CAS  PubMed  Google Scholar 

  8. Marron AO, Akam M, Walker G. Nitrile hydratase genes are present in multiple eukaryotic supergroups. Plos One. 2012;7: e0032867. https://doi.org/10.1371/journal.pone.0032867.

    Article  CAS  Google Scholar 

  9. Xia YY, Cui WJ, Liu ZM, Zhou L, Cui YT, Kobayashi M, Zhou ZM. Construction of a subunit-fusion nitrile hydratase and discovery of an innovative metal ion transfer pattern. Sci Rep. 2016;6:19183. https://doi.org/10.1038/srep19183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hopmann KH, Himo F. Theoretical investigation of the second-shell mechanism of nitrile hydratase. Eur J Inorg Chem. 2008;1406–1412. https://doi.org/10.1002/ejic.200701137.

  11. Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M. Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci USA. 2008;105:14849–54. https://doi.org/10.1073/pnas.0803428105.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xia YY, Cheng ZY, Hou C, Peplowski L, Zhou ZM, Chen XZ. Discovery of the ATPase activity of a cobalt-type nitrile hydratase activator and its promoting effect on enzyme maturation. Biochemistry. 2022;61:2940–7. https://doi.org/10.1021/acs.biochem.2c00167.

    Article  CAS  PubMed  Google Scholar 

  13. Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ. Key Green Chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem. 2018;20:5082–103. https://doi.org/10.1039/c8gc01276h.

    Article  CAS  Google Scholar 

  14. Gong JS, Shi JS, Lu ZM, Li H, Zhou ZM, Xu ZH. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit Rev Biotechnol. 2017;37:69–81. https://doi.org/10.3109/07388551.2015.1120704.

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi M, Shimizu S. Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol. 1998;16:733–6. https://doi.org/10.1038/nbt0898-733.

    Article  CAS  PubMed  Google Scholar 

  16. Yamada H, Kobayashi M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem. 1996;60:1391–400. https://doi.org/10.1271/bbb.60.1391.

    Article  CAS  PubMed  Google Scholar 

  17. Jiao S, Li FL, Yu HM, Shen ZY. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol. 2020;104:1001–12. https://doi.org/10.1007/s00253-019-10284-5.

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z, Liu ZM, Cui WJ, Zhou ZM. Establishment of bioprocess for synthesis of nicotinamide by recombinant Escherichia coli expressing high-molecular-mass nitrile hydratase. Appl Biochem Biotechnol. 2017;182:1458–66. https://doi.org/10.1007/s12010-017-2410-y.

    Article  CAS  PubMed  Google Scholar 

  19. Han LC, Cui WJ, Lin Q, Chen QQ, Suo FY, Ma K, Wang Y, Hao WL, Cheng ZY, Zhou ZM. Efficient overproduction of active nitrile hydratase by coupling expression induction and enzyme maturation via programming a controllable cobalt-responsive gene circuit. Front Bioeng Biotechnol. 2020;8:00193. https://doi.org/10.3389/fbioe.2020.00193.

    Article  Google Scholar 

  20. Liu Y, Cui WJ, Liu ZM, Cui YT, Xia YY, Kobayashi M, Zhou ZM. Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide. J Biosci Bioeng. 2014;118:249–52. https://doi.org/10.1016/j.jbiosc.2014.02.015.

    Article  CAS  PubMed  Google Scholar 

  21. Cui YT, Cui WJ, Liu ZM, Zhou L, Kobayashi M, Zhou ZM. Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun. 2014;450:401–8. https://doi.org/10.1016/j.bbrc.2014.05.127.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Yu HM, Liu CC, Liu J, Shen ZY. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol. 2013;164:354–62. https://doi.org/10.1016/j.jbiotec.2013.01.021.

    Article  CAS  Google Scholar 

  23. Cheng ZY, Peplowski L, Cui WJ, Xia YY, Liu ZM, Zhang JL, Kobayashi M, Zhou ZM. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering. Biotechnol Bioeng. 2018;115:524–35. https://doi.org/10.1002/bit.26484.

    Article  CAS  PubMed  Google Scholar 

  24. Ma D, Cheng ZY, Peplowski L, Han LC, Xia YY, Hou XD, Guo JL, Yin DJ, Rao YJ, Zhou ZM. Insight into the broadened substrate scope of nitrile hydratase by static and dynamic structure analysis. Chem Sci. 2022;13:8417–28. https://doi.org/10.1039/d2sc02319a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol. 2002;320:369–87. https://doi.org/10.1016/s0022-2836(02)00442-4.

    Article  CAS  PubMed  Google Scholar 

  26. Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, Baker D, DiMaio F. Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J Chem Theory Comput. 2016;12:6201–12. https://doi.org/10.1021/acs.jctc.6b00819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li B, Yang YCT, Capra JA, Gerstein MB. Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks. PloS Comput Biol. 2020;16:1008291. https://doi.org/10.1371/journal.pcbi.1008291.

    Article  CAS  Google Scholar 

  28. Wang SY, Tang HZ, Zhao YL, Zuo L. BayeStab: predicting effects of mutations on protein stability with uncertainty quantification. Protein Sci. 2022;31: e4467. https://doi.org/10.1002/pro.4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y, Dym O, Unger T, Albeck S, Prilusky J, Lieberman RL, Aharoni A, Silman I, Sussman JL, Tawfik DS, Fleishman SJ. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell. 2016;63:337–46. https://doi.org/10.1016/j.molcel.2016.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altschul SF, Gertz EM, Agarwala R, Schäffer AA, Yu YK. PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res. 2009;37:815–24. https://doi.org/10.1093/nar/gkn981.

    Article  CAS  PubMed  Google Scholar 

  31. Yamaki T, Oikawa T, Ito K, Nakamura T. Cloning and sequencing of a nitrile hydratase gene from Pseudonocardia thermophila JCM3095. J Ferment Bioeng. 1997;83:474–7. https://doi.org/10.1016/s0922-338x(97)83004-8.

    Article  CAS  Google Scholar 

  32. Miyanaga A, Fushinobu S, Ito K, Wakagi T. Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun. 2001;288:1169–74. https://doi.org/10.1006/bbrc.2001.5897.

    Article  CAS  PubMed  Google Scholar 

  33. Han LC, Liu XY, Cheng ZY, Cui WJ, Guo JL, Yin J, Zhou ZM. Construction and application of a high-throughput in vivo screening platform for the evolution of nitrile metabolism-related enzymes based on a desensitized repressive biosensor. ACS Synth Biol. 2022;11:1577–87. https://doi.org/10.1021/acssynbio.1c00642.

    Article  CAS  PubMed  Google Scholar 

  34. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343-U341. https://doi.org/10.1038/nmeth.1318.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng ZY, Jiang SJ, Zhou ZM. Substrate access tunnel engineering for improving the catalytic activity of a thermophilic nitrile hydratase toward pyridine and pyrazine nitriles. Biochem Biophys Res Commun. 2021;575:8–13. https://doi.org/10.1016/j.bbrc.2021.08.059.

    Article  CAS  PubMed  Google Scholar 

  36. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K, Labonte JW, Pacella MS, Bonneau R, Bradley P, Dunbrack RL, Das R, Baker D, Kuhlman B, Kortemme T, Gray JJ. The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13:3031–48. https://doi.org/10.1021/acs.jctc.7b00125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583. https://doi.org/10.1038/s41586-021-03819-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Guo Z, Wu T, Roy RS, Quadir F, Chen C, Cheng J. Enhancing alphafold-multimer-based protein complex structure prediction with MULTICOM in CASP15. Commun Biol. 2023;6:1140. https://doi.org/10.1038/s42003-023-05525-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput. 2012;8:3257–73. https://doi.org/10.1021/ct300400x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kale LV, Schulten K, Chipot C, Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153: e0014475. https://doi.org/10.1063/5.0014475.

    Article  CAS  Google Scholar 

  41. Peplowski L, Kubiak K, Nowak W. Mechanical aspects of nitrile hydratase enzymatic activity. Steered molecular dynamics simulations of Pseudonocardia thermophila JCM 3095. Chem Phys Lett. 2008;467:144–9. https://doi.org/10.1016/j.cplett.2008.10.072.

    Article  CAS  Google Scholar 

  42. Vanommeslaeghe K, Raman EP, MacKerell AD. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model. 2012;52:3155–68. https://doi.org/10.1021/ci3003649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph Model. 1996;14:33–8. https://doi.org/10.1016/0263-7855(96)00018-5.

    Article  CAS  Google Scholar 

  44. Grant BJ, Skjærven L, Yao XQ. The Bio3D packages for structural bioinformatics. Protein Sci. 2021;30:20–30. https://doi.org/10.1002/pro.3923.

    Article  CAS  PubMed  Google Scholar 

  45. Sora V, Laspiur AO, Degn K, Arnaudi M, Utichi M, Beltrame L, De Menezes D, Orlandi M, Stoltze UK, Rigina O, Sackett PW, Wadt K, Schmiegelow K, Tiberti M, Papaleo E. RosettaDDGPrediction for high-throughput mutational scans: from stability to binding. Protein Sci. 2023;32: e4527. https://doi.org/10.1002/pro.4527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heinemann PM, Armbruster D, Hauer B. Active-site loop variations adjust activity and selectivity of the cumene dioxygenase. Nat Commun. 2021;12:1095. https://doi.org/10.1038/s41467-021-21328-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SCL. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J Am Chem Soc. 2021;143:3830–45. https://doi.org/10.1021/jacs.0c11806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu YF, Xu GC, Zhou JY, Ni J, Zhang L, Hou XD, Yin DJ, Rao YJ, Zhao YL, Ni Y. Structure-guided engineering of d-Carbamoylase reveals a key loop at substrate entrance tunnel. ACS Catal. 2020;10:12393–402. https://doi.org/10.1021/acscatal.0c02942.

    Article  CAS  Google Scholar 

  49. Zhou ZF, Ma D, Cheng ZY. Engineering of the thermophilic nitrile hydratase from Pseudonocardia thermophila JCM3095 for large-scale nicotinamide production based on sequence-activity relationships. Int J Biol Macromol. 2021;191:775–82. https://doi.org/10.1016/j.ijbiomac.2021.09.132.

    Article  CAS  PubMed  Google Scholar 

  50. Callea L, Bonati L, Motta S. Metadynamics-based approaches for modeling the hypoxia-inducible factor 2α ligand binding process. J Chem Theory Comput. 2021;17:3841–51. https://doi.org/10.1021/acs.jctc.1c00114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA. 2002;99:12562–6. https://doi.org/10.1073/pnas.202427399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raniolo S, Limongelli V. Ligand binding free-energy calculations with funnel metadynamics. Nat Protoc. 2020;15:2837–66. https://doi.org/10.1038/s41596-020-0342-4.

    Article  CAS  PubMed  Google Scholar 

  53. Hopmann KH. Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch. Inorg Chem. 2014;53:2760–2. https://doi.org/10.1021/ic500091k.

    Article  CAS  PubMed  Google Scholar 

  54. Cui YL, Chen YC, Liu XY, Dong SJ, Tian YE, Qiao YX, Mitra R, Han J, Li CL, Han X, Liu WD, Chen Q, Wei WQ, Wang X, Du WB, Tang SY, Xiang H, Liu HY, Liang Y, Houk KN, Wu B. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. 2021;11:1340–50. https://doi.org/10.1021/acscatal.0c05126.

    Article  CAS  Google Scholar 

  55. Meijing W, Xin G, Wei Z, Chao L, Fuping L, Lijun G, Weidong L, Jianwen W, Fenghua W, Hui-Min Q. Enhanced thermostability of an l-Rhamnose isomerase for d-allose synthesis by computation-based rational redesign of flexible regions. J Agric Food Chem. 2023;71:15713–22. https://doi.org/10.1021/acs.jafc.3c05736.

    Article  CAS  Google Scholar 

  56. Yu HR, Dalby PA. Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics. Proc Natl Acad Sci USA. 2018;115:E11043–52. https://doi.org/10.1073/pnas.1810324115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein design: from the aspect of water solubility and stability. Chem Rev. 2022;122:14085–179. https://doi.org/10.1021/acs.chemrev.1c00757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhong C, Wei P, Zhang YHP. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons. Biotechnol Bioeng. 2017;114:1054–64. https://doi.org/10.1002/bit.26238.

    Article  CAS  PubMed  Google Scholar 

  59. Xie X, Wu P, Huang XC, Bai WF, Li BW, Shi N. Retro-protein XXA is a remarkable solubilizing fusion tag for inclusion bodies. Microb Cell Fact. 2022;21:51. https://doi.org/10.1186/s12934-022-01776-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hon J, Marusiak M, Martinek T, Kunka A, Zendulka J, Bednar D, Damborsky J. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics. 2021;37:23–8. https://doi.org/10.1093/bioinformatics/btaa1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song W, Xu X, Gao C, Zhang YX, Wu J, Liu J, Chen XL, Luo QL, Liu LM. Open gate of Corynebacterium glutamicum threonine deaminase for efficient synthesis of bulky α-keto acids. ACS Catal. 2020;10:9994–10004. https://doi.org/10.1021/acscatal.0c01672.

    Article  CAS  Google Scholar 

  62. Wu T, Wang YM, Zhang NX, Yin DJ, Xu Y, Nie Y, Mu XQ. Reshaping substrate-binding pocket of leucine dehydrogenase for bidirectionally accessing structurally diverse substrates. ACS Catal. 2023;13:158–68. https://doi.org/10.1021/acscatal.2c04735.

    Article  CAS  Google Scholar 

  63. Gu J, Xu Y, Nie Y. Role of distal sites in enzyme engineering. Biotechnol Adv. 2023;63: 108094. https://doi.org/10.1016/j.biotechadv.2023.108094.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (32201034, 32271301), China Innovation Challenge (NingBo) Major Project (2023T020), the Natural Science Foundation of Jiangsu (BK20210470). Many thanks to Professor Lukasz Peplowski of the Nicolaus Copernicus University in Toruń, Poland, for generously sharing the topology and force field parameter files of the NHase active site, which supported the MD simulations in this study. The MD simulation and structural analysis in this study were supported by the high-performance computing cluster platform of the School of Biotechnology, Jiangnan University.

Author information

Authors and Affiliations

Authors

Contributions

LH and ZZ conceived the project and wrote the paper. ML, DM, JQ and ZC designed and performed all the experiments. LH and QW performed structural analysis and computational simulation. ML, ZZ and LH analyzed the results.

Corresponding authors

Correspondence to Zhemin Zhou or Laichuang Han.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2737 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ma, D., Qiao, J. et al. Development of high-performance nitrile hydratase whole-cell catalyst by automated structure- and sequence-based design and mechanism insights. Syst Microbiol and Biomanuf (2024). https://doi.org/10.1007/s43393-024-00239-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43393-024-00239-x

Keywords

Navigation