Skip to main content
Log in

Advances in cloning, structural and bioremediation aspects of nitrile hydratases

  • Mini Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Nitrile hydratase (NHase) is a prominent enzyme in many microorganisms for its nitrile metabolism. The potentiality in the bioconversion of nitriles to its high-value amides has been extensively used in industries for the production of acrylamide and nicotinamide which are essential chemicals. Enzymologists are still considering NHases for its potential biotechnological applications including biotransformations and bioremediations. But most of the nitrile hydratases have limitations like the low expression, low thermostability and enantioselectivity. Though considerable data has been generated in the area of gene configuration, crystal structure, kinetic mechanism and photoreactivity of NHases, there is a need for constant improvement to develop a robust biocatalyst for bioremediation of toxic nitriles. With these considerations, in the present review, we report advances with the main focus to structure, catalytic mechanism, cloning strategy, gene expression, bioinformatic tools, metagenomics, thermostability and current bioremediation applications of NHases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17:284–292

    Article  CAS  PubMed  Google Scholar 

  2. Wohlgemuth R (2010) Biocatalysis—the key to sustainable industrial chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. van Pelt S, Quignard S, Kubáč D, Sorokin DY, van Rantwijk F, Sheldon RA (2008) Nitrile hydratase CLEAs: the immobilization and stabilization of an industrially important enzyme. Green chemistry 10(4):395–400

    Article  Google Scholar 

  4. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  5. Asano Y (2013) Handbook of proteolytic enzymes, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  6. Marron AO, Akam M, Walker G (2012) Nitrile hydratase genes are present in multiple eukaryotic supergroups. PLoS ONE 7(4):e32867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mylerova V, Martinkova L (2003) Synthetic applications of nitrile-converting enzymes. Curr Org Chem 7:1–17

    Google Scholar 

  8. Prasad S, Raj J, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–774

    Article  CAS  PubMed  Google Scholar 

  9. Mascharak PK (2002) Structural and functional models of nitrile hydratase. Coord Chem Rev 225:201–214

    Article  CAS  Google Scholar 

  10. Payne MS, Wu S, Fallon RD, Tudor G, Stieglitz B, Turner IM Jr, Nelson MJ (1997) A stereoselective cobalt-containing nitrile hydratase. Biochemistry 36(18):5447–5454

    Article  CAS  PubMed  Google Scholar 

  11. Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Mol Microbiol 65(3):828–838

    Article  CAS  PubMed  Google Scholar 

  12. Kovacs J (2004) Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes. Chem Rev 104(2):825–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamada H, Kobayashi M (1996) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400

    Article  CAS  PubMed  Google Scholar 

  14. Sugiura Y, Kuwahara J, Nagasawa T, Yamada H (1987) Nitrile hydratase: the first non-heme iron enzyme with a typical low spin Fe(III) active centre. J Am Chem Soc 109:5848–5850

    Article  CAS  Google Scholar 

  15. Popescu VC, Munck E, Fox BG, Sanakis Y, Cummings JG, Turner IM, Nelson MJ (2001) Mossbauer and EPR studies of the photoactivation of nitrile hydratase. Biochemistry 40:7984–7991

    Article  CAS  PubMed  Google Scholar 

  16. Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  17. Huang W, Jia J, Cummings J, Nelson M, Schneder G, Lindqvist Y (1997) Crystal structure of nitrile hydratase reveals a novel iron centre in a novel fold. Structure 5:691–699

    Article  CAS  PubMed  Google Scholar 

  18. Nagasawa T, Takeuchu K, Yamada H (1991) Characterization of new cobalt containing nitrile hydratase purified from urea-induced cells of R. rhodochrous J1. Eur J Biochem 196:581–589

    Article  CAS  PubMed  Google Scholar 

  19. Komeda H, Kobayashi M, Shimizu S (1996) A novel gene cluster including the R. rhodochrous J1 nhiBA genes encoding a new low molecular mass nitrile hydratase (L-NHase) induced by its reaction product. J Biol Chem 271:15796–15802

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto K, Suzuki H, Taniguchi K, Noguchi T, Yohda M, Odaka M (2008) Catalytic mechanism of nitrile hydratase proposed by time-resolved X-ray crystallography using a novel substrate, tert-butylisonitrile. J Biol Chem 283:36617–36623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyanaga A, Fushinobu S, Ito K, Wakagi T (2001) Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun 288:1169–1174

    Article  CAS  PubMed  Google Scholar 

  22. Sharma PK, Bhalla TC (2016) In silico analysis of physicochemical properties of hyperthermophilic and thermophilic nitrile hydratases. Int J Curr Microbiol App Sci 5(4):596–607

    Article  CAS  Google Scholar 

  23. Yamanaka Y, Kato Y, Hashimoto K, Iida K, Nagasawa K, Nakayama H, Dohmae N, Noguchi K, Noguchi T, Yohda M, Odaka M (2015) Time-resolved crystallography of the reaction intermediate of nitrile hydratase: revealing a role for the cysteine sulfenic acid ligand as a catalytic nucleophile. Angew Chem Int Ed Engl 54:10763–10767

    Article  CAS  PubMed  Google Scholar 

  24. Martinez S, Wu R, Krzywda K, Opalka V, Chan H, Liu D, Holz RC (2015) Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1. J Biol Inorg Chem 20(5):885–894

    Article  CAS  PubMed  Google Scholar 

  25. Martinez S, Wu R, Sanishvili R, Liu D, Holz R (2014) The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile. J Am Chem Soc 136(4):1186–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brodkin HR, Novak WR, Milne AC, D’Aquino JA, Karabacak NM, Goldberg IG, Agar JN, Payne MS, Petsko GA, Ondrechen MJ (2011) Evidence of the participation of remote residues in the catalytic activity of co-type nitrile hydratase from Pseudomonas putida. Biochemistry 50:4923–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arakawa T, Kawano Y, Kataoka S, Katayama Y, Kamiya N, Yohda M, Odaka M (2007) Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) centre. J Mol Biol 366(5):1497–1509

    Article  CAS  PubMed  Google Scholar 

  28. Kuhn ML, Martinez S, Gumataotao N, Holz RC (2012) The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochem Biophys Res Commun 424(3):365–370

    Article  CAS  PubMed  Google Scholar 

  29. Kayanuma M, Shoji M, Yohda M, Odaka M, Shigeta Y (2016) Catalytic mechanism of nitrile hydratase subsequent to cyclic intermediate formation: a QM/MM Study. J Phys Chem B 120(13):3259–3266

    Article  CAS  PubMed  Google Scholar 

  30. Hopmann KH (2014) Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch. Inorg Chem 53(6):2760–2762

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Z, Hashimoto Y, Cui T, Washizawa Y, Mino H (2010) Kobayashi M (2010) Unique biogenesis of high-molecular-mass multimeric metalloenzyme nitrile hydratase: intermediates and a proposed mechanism for self-subunit swapping maturation. Biochemistry 49:9638–9648

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M (2008) Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci USA 105:14849–14854

    Article  PubMed  Google Scholar 

  33. Zhou Z, Hashimoto Y, Kobayashi M (2009) Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal-ligand cysteine residues and insertion of cobalt. J Biol Chem 284:14930–14938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ikehata O, Nishiyama M, Horinouchi S, Beppu T (1989) Primary structure of NHase deduced from the nucleotide sequence of a Rhodococcus sp. and its expression in E. coli. Eur J Biochem 181:563–570

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T, Yamada H (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim Biophys Acta 1129:23–33

    Article  CAS  PubMed  Google Scholar 

  36. Pratush A, Seth A, Bhalla TC (2012) Cloning, sequencing, and expression of nitrile hydratase gene of a mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli. Appl Biochem Biotechnol 168(3):465–486

    Article  CAS  PubMed  Google Scholar 

  37. Shi Y, Huimin Yu, Sun X, Tian Z, Shen Z (2004) Cloning of the nitrile hydratase gene from Nocardia sp. in Escherichia coli and Pichia pastoris and its functional expression using site-directed mutagenesis. Enzyme Microbial Technol 35(6–7):557–562

    Article  CAS  Google Scholar 

  38. Kim S-H, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme Microbial Technol 27(7):492–501

    Article  CAS  Google Scholar 

  39. Stevens JM, Saroja NR, Jaouen M, Belghazi M, Schmitter J-M, Mansuy D, Artaud I, Sari M-A (2003) Chaperone-assisted expression, purification, and characterization of recombinant nitrile hydratase NI1 from Comamonas testosterone. Protein Expr Purif 29(1):70–76

    Article  CAS  PubMed  Google Scholar 

  40. Precious S, Goulas P, Duran R (2001) Rapid and specific identification of nitrile hydratase (NHase)—encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol Lett 204:155–161

    Article  Google Scholar 

  41. Lu J, Zheng Y, Yamagishi H, Odaka M, Tsujimura M, Maeda M, Endo I (2003) Motif CXCC in nitrile hydratase activator is critical for NHase biogenesis in vivo. FEBS Lett 553(3):391–396

    Article  CAS  PubMed  Google Scholar 

  42. Precigou S, Wieser M, Pommares P, Goulas P, Duran R (2004) Rhodococcus pyridinovorans MW3 a bacterium producing a nitrile hydratase. Biotech Lett 26:1379–1384

    Article  CAS  Google Scholar 

  43. Pei X, Zhang H, Meng L, Xu G, Wu J (2013) Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fed-batch strategy. Process Biochem 48(12):1921–1927

    Article  CAS  Google Scholar 

  44. Daiana D, Rose DR, Glick Bernard R (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. Strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microbiol 80:4640–4649

    Article  CAS  Google Scholar 

  45. Sun W, Zhu L, Chen X, Chen P, Yang L, Ding W, Zhou Z, Liu Y (2016) Successful expression of the Bordetella petrii nitrile hydratase activator P14 K and the unnecessary role of Ser115. BMC Biotechnol 16:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pratush A, Seth A, Bhalla TC (2017) Expression of nitrile hydratase gene of the mutant 4D strain of Rhodococcus rhodochrous PA 34 in Pichia pastoris. Biocatal Biotransform 35(1):19–26

    Article  CAS  Google Scholar 

  47. Pei X, Wang Q, Meng L, Li J, Yang Z, Yin X, Yang L, Chen S, Wu J (2015) Chaperone-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. J Biotechnol 203:9–16

    Article  CAS  PubMed  Google Scholar 

  48. Liebeton K, Eck J (2004) Identification and expression in E. coli of novel nitrile hydratases from the metagenome. Eng Life Sci 4(6):557–562

    Article  CAS  Google Scholar 

  49. Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I (1999) J Biochem 125:696–704

    Article  CAS  PubMed  Google Scholar 

  50. Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterization. Appl Microbiol Biotechnol 85:1417–1425

    Article  CAS  PubMed  Google Scholar 

  51. Kwon WS, Da Silva NA, Kellis JT Jr (1996) Relationship between thermal stability, degradation rate and expression yield of barnase variants in the periplasm of Escherichia coli. Protein Eng 9:1197–1202

    Article  CAS  PubMed  Google Scholar 

  52. Petrillo KL, Wu S, Hann EC, Cooling FB, Ben-Bassat A, Gavagan JE, DiCosimo R, Payne MS (2005) Over-expression in Escherichia coli of a thermally stable and regio-selective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Appl Microbiol Biotechnol 67(5):664–670

    Article  CAS  PubMed  Google Scholar 

  53. Cameron RA, Sayed M, Cowan DA (2005) Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8. Biochim Biophys Acta 1725:35–46

    Article  CAS  PubMed  Google Scholar 

  54. Okamoto S, Van Petegem F, Patrauchan MA, Eltis LD (2010) Metallochaperone: involved in the maturation of a cobalt-dependent nitrile hydratase. J Biol Chem 285:25126–25133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Cui W, Fang Y, Yuechun Yu, Cui Y, Xia Y, Kobayashi M, Zhou Z (2013) Strategy for successful expression of the Pseudomonas putida nitrile hydratase activator P14 K in Escherichia coli. BMC Biotechnol 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang H, Li M, Li J, Li F, Li M, Li F, Xiong M (2017) Chaperone-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature. Process Biochem 56:37–44

    Article  CAS  Google Scholar 

  57. Wu S, Fallon RD, Payne MS (1997) Over-production of stereoselective nitrile hydratase from Pseudomonas putida 5B in Escherichia coli: activity requires a novel downstream protein. Appl Microbiol Biotechnol 48(6):704–708

    Article  CAS  PubMed  Google Scholar 

  58. Song L, Wang M, Yang X, Qian S (2007) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus sp. AJ270. Biotechnol J 2(6):717–724

    Article  CAS  PubMed  Google Scholar 

  59. Hashimoto Y, Nishiyama M, Yu F, Watanabe I, Horinouchi S, Beppu T (1992) J Gen Microbiol 138:1003–1010

    Article  CAS  PubMed  Google Scholar 

  60. Na D, Lee D (2010) RBS Designer: software for designing synthetic ribosome binding sites that yields the desired level of protein expression. Bioinformatics 26:2633–2634

    Article  CAS  PubMed  Google Scholar 

  61. De Smit M, Van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668

    Article  PubMed  Google Scholar 

  62. Makrides S (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Mol Biol Rev 60:512

    CAS  Google Scholar 

  63. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Icev A, Ruiz C, Ryder E (2003) Distance-enhanced association rules for gene expression. Gene 10:34–40

    Google Scholar 

  65. Lan Y, Zhang X, Liu Z, Zhou L, Shen R, Zhong X, Cui W, Zhou Z (2017) Overexpression and characterization of two types of nitrile hydratases from Rhodococcus rhodochrous J1. PLoS ONE 23:e0179833

    Article  CAS  Google Scholar 

  66. Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K, Bull AT (1998) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269–277

    Article  CAS  PubMed  Google Scholar 

  67. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bunch AW (1998) Nitriles in biotechnology. In: Rehm HJ, Reed G (eds) Biotransformations, vol 8a. Wiley-VCH, Weinheim, pp 277–324

    Google Scholar 

  69. Cowan DA (2000) Microbial genomes the untapped resource. Trends Biotechnol 18:14–16

    Article  CAS  PubMed  Google Scholar 

  70. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  71. Brandao Pedro F B, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69(10):5754–5766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Co Lorenz P, Köhler B, Wolf M, Eck J, Zinke H (2000) Expression cloning of metagenome DNA from soil. Biotechnol Book of Abstr 2:306

    Google Scholar 

  73. Verseck S, Liebeton K, Juergen E (2004) Nitrile hydratases from metagenome libraries. European patent No. CA 2,557,476

  74. Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):132

    Article  CAS  Google Scholar 

  75. Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15(6):387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195

    Article  CAS  Google Scholar 

  77. Xia Y, Cui W, Liu Z, Zhou L, Cui Y, Kobayashi M, Zhou Z (2016) Construction of a subunit-fusion nitrile hydratase and discovery of an innovative metal ion transfer pattern. Sci Rep 6:19183. https://doi.org/10.1038/Srep19183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Foerstner KU, Doerks T, Muller J, Raes J, Bork P (2008) A nitrile hydratase in the eukaryote monosiga brevicollis. PLoS ONE 3(12):e3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nagasawa T, Nanba H, Ryuno K, Takeuchi K, Yamada H (1987) Nitrile hydratase of Pseudomonas chlororaphis B23 Purification and characterization. Eur J Biochem 162(3):691–698

    Article  CAS  PubMed  Google Scholar 

  80. Li W, Zhang Y, Yang H (1992) Formation and purification of nitrile hydratase from Corynebacterium pseudodiphteriticum ZBB-41. Appl Biochem Biotechnol 36(1992):171–177

    Article  CAS  Google Scholar 

  81. Zhao A, Li W, Yang H (1995) Production and properties of 3-cyanopyridine hydratase in Rhodococcus equi SHB-121. Appl Biochem Biotechnol 53:65–73

    Article  CAS  Google Scholar 

  82. Pereira RA, Graham D, Rainey FA, Cowan DA (1998) A novel thermostable nitrile hydratase. Extremophiles 2:347

    Article  CAS  PubMed  Google Scholar 

  83. Prasad S, Raj J, Bhalla TC (2009) Purification of a hyperactive nitrile hydratase from resting cells of Rhodococcus rhodochrous PA-34. Indian J Microbiol 49:237–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pollak P, Remender G, Hagedorn F, Gelbke H-P, Hawkins SB, Schulz G (eds) (1991) Ullman’s Encyclopedia of industrial chemistry, vol 5(A17). Wiley-VCH, Weinheim, pp 363–376

    Google Scholar 

  85. Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353

    Article  Google Scholar 

  86. Alagh P, Gaganjyot Kaur BS, Kumar A (2015) A green chemistry approach to bioremediate acetonitrile. World J Pharm Res 4(11):1664–1674

    CAS  Google Scholar 

  87. Kao CM, Chen KF, Liu JK, Chou SM, Chen SC (2006) Enzymatic degradation of nitriles by Klebsiella oxytoca. Appl Microbiol Biotechnol 1(2):228–233

    Article  CAS  Google Scholar 

  88. Wang CC, Lee CM (2001) Denitrification with acrylamide by a pure culture of bacteria isolated from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system. Chemosphere 44:1047

    Article  CAS  PubMed  Google Scholar 

  89. Prabhu CS, Thatheyus AJ (2007) Biodegradation of acrylamide employing free and immobilized cells of Pseudomonas aeruginosa. Int Biodeterior Biodegrad 60:69–73

    Article  CAS  Google Scholar 

  90. Blanchard LA, Brennecke JF (2001) Recovery of organic products from ionic liquids using supercritical carbon dioxide. Ind Eng Chem Res 40(1):287–292

    Article  CAS  Google Scholar 

  91. Saroja N, Shamala TR, Tharanathan RN (2000) Biodegradation of S-g-PAN a packaging material using Bacillus cereus. Process Biochem 36:119–125

    Article  CAS  Google Scholar 

  92. Wyatt JM, Knowles CJ (1995) Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and condensates from the manufacture of acrylonitrile. Int Deter Biodegrad 35(1–3):227–248

    Article  CAS  Google Scholar 

  93. Deshkar A, Dhamorikar N, Godbole S, Krishnamurthi K, Saravanadevi S, Vijay R, Kaul S, Chakrabarti T (2003) Bioremediation of soil contaminated with organic compounds with special reference to acrylonitrile. Ann Chem 93(9–10):729–737

    CAS  Google Scholar 

  94. Chen J, Zheng R-C, Zheng Y-G, Shen Y-C (2009) Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Engin/Biotechnol 113:33–77

    CAS  Google Scholar 

  95. Holtze MS, Sørensen J, Hansen HCB, Aamand J (2006) Transformation of the herbicide 2,6-dichlorobenzonitrile to the persistent metabolite 2,6-dichlorobenzamide (BAM) by soil bacteria known to harbour nitrile hydratase or nitrilase. Biodegradation 17:503–510

    Article  CAS  PubMed  Google Scholar 

  96. Martinkova L, Vejvoda V, Kaplan O, Kubáč D, Malandra A, Cantarella M, Bezouška K, Křen V (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670

    Article  CAS  PubMed  Google Scholar 

  97. Muller D, Gabriel J (1999) Bacterial degradation of the herbicide bromoxynil by Agrobacterium radiobacter in the biofilm. Folia Microbiol 44:377–379

    Article  CAS  Google Scholar 

  98. Odaka M, Fujii K, Hoshino M, Noguchi T, Tsujimura M, Nagashima S, Yohda M, Nagamune T, Inoue Y, Endo I (1997) Activity regulation of photoreactive nitrile hydratase by nitric oxide. J Am Chem Soc 119(16):3785–3791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank profusely Mr Vinay Kumar Rao, Temasek life sciences laboratory, Singapore for manuscript preparation. Our thanks are to Drs Govindappa M, Rajeswari N and Mahesh S, Department of Biotechnology, DSCE, Bengaluru for technical assistance and financial assistance from Karnataka Innovation and Technology Society (K-Tech), Govt. of Karnataka, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroja Narsing Rao.

Ethics declarations

Conflict of interest

The Authors of this review article declare that there is no conflict of interest.

Research involving human and animal participant

This manuscript does not contain any experiments with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supreetha, K., Rao, S.N., Srividya, D. et al. Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol Biol Rep 46, 4661–4673 (2019). https://doi.org/10.1007/s11033-019-04811-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04811-w

Keywords

Navigation