Skip to main content
Log in

Current advances in the biotechnological synthesis of betulinic acid: new findings and practical applications

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Betulinic acid (BA), a penta-cyclic triterpenoid found as a ubiquitous secondary metabolite throughout the plant kingdom, has aroused tremendous interests due to its different pharmacological properties, which lead to large market demand. However, the content of BA in plant is low for phytoextraction. Although chemical semi-synthesis or biotransformation of BA from betulin with high conversion efficiency is achieved, it still relies on phytoextraction from the bark of medicinal trees. To circumvent this issue, the biotechnological synthesis of BA in engineered yeasts has been developed. In this review, the pharmacological properties of BA are first summarized, including antitumor, anti-HIV, antiprotozoal, anti-inflammatory, apoptosis activator and anti-metabolic syndrome. Then, the traditional phytoextraction, semi-synthesis and biotechnological synthesis of BA are discussed. Particularly, current advances in its biotechnological synthesis and strategies to improve BA production are focused. Moreover, potential strategies for further promotion of BA yield, including the introduction of artificial isopentenol utilization pathway, semi-rational mutagenesis of lupeol synthase and cytochrome P450, and subcellular morphology and compartmentalization, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xiao SL, Tian ZY, Wang YF, Si LL, Zhang LH, Zhou DM. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38(3):951–76. https://doi.org/10.1002/med.21484.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Czarnotta E, Dianat M, Korf M, Granica F, Merz J, Maury J, et al. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae. Biotechnol Bioeng. 2017;114(11):2528–38. https://doi.org/10.1002/bit.26377.

    Article  CAS  PubMed  Google Scholar 

  3. Retzlaff F. Ueber herba gratiolae. Arch Pharm. 1902;240(8):561–8. https://doi.org/10.1002/ardp.19022400802.

    Article  CAS  Google Scholar 

  4. Chen GG, Lai P. Targeting cancer by betulin and betulinic acid. Dordrecht: Springer; 2012.

    Google Scholar 

  5. Zuco V, Supino R, Righetti SC, Cleris L, Formelli F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002;175(1):17–25. https://doi.org/10.1016/S0304-3835(01)00718-2.

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Chen CH, Morris-Natschke SL, Lee KH. Design, synthesis, and structure activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors. Eur J Med Chem. 2021;215: 113287. https://doi.org/10.1016/j.ejmech.2021.113287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev. 2004;24(1):90–114. https://doi.org/10.1002/med.10053.

    Article  CAS  PubMed  Google Scholar 

  8. Cunha AB, Batista R, Castro MA, David JM. Chemical strategies towards the synthesis of betulinic acid and its more potent antiprotozoal analogues. Molecules. 2021;26(4):1081. https://doi.org/10.3390/molecules26041081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ou ZP, Zhao J, Zhu LJ, Huang L, Ma YR, Ma CY, et al. Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed Pharmacother. 2019;118: 109347. https://doi.org/10.1016/j.biopha.2019.109347.

    Article  CAS  PubMed  Google Scholar 

  10. Laavola M, Haavikko R, Hamalainen M, Leppanen T, Nieminen R, Alakurtti S, et al. Betulin derivatives effectively suppress inflammation in vitro and in vivo. J Nat Prod. 2016;79(2):274–80. https://doi.org/10.1021/acs.jnatprod.5b00709.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar P, Bhadauria AS, Singh AK, Saha S. Betulinic acid as apoptosis activator: molecular mechanisms, mathematical modeling and chemical modifications. Life Sci. 2018;209:24–33. https://doi.org/10.1016/j.lfs.2018.07.056.

    Article  CAS  PubMed  Google Scholar 

  12. Kim J, Lee YS, Kim CS, Kim JS. Betulinic acid has an inhibitory effect on pancreatic lipase and induces adipocyte lipolysis. Phytother Res. 2012;26(7):1103–6. https://doi.org/10.1002/ptr.3672.

    Article  CAS  PubMed  Google Scholar 

  13. Trumbull ER, Bianchi E, Eckert DJ, Wiedhopf RM, Cole JR. Tumor inhibitory agents from Vauquelinia corymbosa (Rosaceae). J Pharm Sci US. 2010;65(9):1407–8. https://doi.org/10.1002/jps.2600650938.

    Article  Google Scholar 

  14. Pisha E, Chai H, Lee I-S, Chagwedera TE, Farnsworth NR, Cordell GA, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med. 1995;1(10):1046–51. https://doi.org/10.1038/nm1095-1046.

    Article  CAS  PubMed  Google Scholar 

  15. Coricovac D, Dehelean CA, Pinzaru I, Mioc A, Aburel OM, Macasoi I, et al. Assessment of betulinic acid cytotoxicity and mitochondrial metabolism impairment in a human melanoma cell line. Int J Mol Sci. 2021;22(9):4870. https://doi.org/10.3390/ijms22094870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiu CF, Chang HY, Huang CY, Mau CZ, Kuo TT, Lee HC, et al. Betulinic acid affects the energy-related proteomic profiling in pancreatic ductal adenocarcinoma cells. Molecules. 2021;26(9):2482. https://doi.org/10.3390/molecules26092482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chintharlapalli S, Papineni S, Ramaiah SK, Safe S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res. 2007;67(6):2816–23. https://doi.org/10.1158/0008-5472.CAN-06-3735.

    Article  CAS  PubMed  Google Scholar 

  18. Lee J-W, Choi Y-J, Kim S-I, Lee S-Y, Kang S-S, Kim N-H, et al. Betulinic acid inhibits LPS-induced MMP-9 expression by suppressing NF-kB activation in BV2 microglial cells. Biomol Ther. 2011;19(4):431–7. https://doi.org/10.4062/biomolther.2011.19.4.431.

    Article  CAS  Google Scholar 

  19. Fujioka T, Kashiwada Y, Kashiwada RE, Cosentino LM, Ballas LM, Jiang JB, et al. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod. 1994;57(2):243–7. https://doi.org/10.1021/np50104a008.

    Article  CAS  PubMed  Google Scholar 

  20. Domínguez-Carmona DB, Escalante-Erosa F, García-Sosa K, Ruiz-Pinell G, Gutierrez-Yapu D, Chan-Bacab MJ, et al. Antiprotozoal activity of betulinic acid derivatives. Phytomedicine. 2010;17(5):379–82. https://doi.org/10.1016/j.phymed.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  21. Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, et al. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv. 2020;38: 107409. https://doi.org/10.1016/j.biotechadv.2019.06.008.

    Article  CAS  PubMed  Google Scholar 

  22. Bildziukevich U, Özdemir Z, Wimmer Z. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules. 2019;24(19):3546. https://doi.org/10.3390/molecules24193546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suresh C, Zhao H, Gumbs A, Chetty CS, Bose HS. New ionic derivatives of betulinic acid as highly potent anti-cancer agents. Bioorg Med Chem Lett. 2012;22(4):1734–8. https://doi.org/10.1016/j.bmcl.2011.12.102.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Hu JY, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep. 2016;14(5):4489–95. https://doi.org/10.3892/mmr.2016.5792.

    Article  CAS  PubMed  Google Scholar 

  25. Sousa JLC, Freire CSR, Silvestre AJD, Silva AMS. Recent developments in the functionalization of betulinic acid and its natural analogues: a route to new bioactive compounds. Molecules. 2019;24(2):355. https://doi.org/10.3390/molecules24020355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J. Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev. 2019;18(3):929–51. https://doi.org/10.1007/s11101-019-09623-1.

    Article  CAS  Google Scholar 

  27. Ali-Seyed M, Jantan I, Vijayaraghavan K, Bukhari SN. Betulinic acid: recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem Biol Drug Des. 2016;87(4):517–36. https://doi.org/10.1111/cbdd.12682.

    Article  CAS  PubMed  Google Scholar 

  28. Mueller D, Triebel S, Rudakovski O, Richling E. Influence of triterpenoids present in apple peel on inflammatory gene expression associated with inflammatory bowel disease (IBD). Food Chem. 2013;139(1–4):339–46. https://doi.org/10.1016/j.foodchem.2013.01.101.

    Article  CAS  PubMed  Google Scholar 

  29. Pai SR, Joshi RK. Distribution of betulinic acid in plant kingdom. Plant Science Today. 2014;1(3):103–7. https://doi.org/10.14719/pst.2014.1.3.58.

    Article  Google Scholar 

  30. Pezzuto JM, Kim D. Improved methods of manufacturing betulinic acid [P]. WO9843936. 1998. October 8.

  31. Stork G, Uyeo S, Wakamatsu T, Grieco PA, Labovitz J. Total synthesis of lupeol. J Am Chem Soc. 1971;93(19):4945–7. https://doi.org/10.1021/ja00748a068.

    Article  CAS  Google Scholar 

  32. Surendra K, Corey EJ. A short enantioselective total synthesis of the fundamental pentacyclic triterpene lupeol. J Am Chem Soc. 2009;131(39):13928–9. https://doi.org/10.1021/ja906335u.

    Article  CAS  PubMed  Google Scholar 

  33. Co M, Koskela P, Eklund-Åkergren P, Srinivas K, King JW, Sjöberg PJR, et al. Pressurized liquid extraction of betulin and antioxidants from birch bark. Green Chem. 2009;11(5):668–74. https://doi.org/10.1039/b819965e.

    Article  CAS  Google Scholar 

  34. Kim DSHI, Chen ZD, Nguyen VT, Pezzuto JM, Qiu SH, Lu ZZ. A concise semi-synthetic approach to betulinic acid from betulin. Synth Commun. 1997;27(9):1607–12. https://doi.org/10.1080/00397919708006099.

    Article  CAS  Google Scholar 

  35. Ressmann AK, Kremsmayr T, Gaertner P, Zirbs R, Bica K. Toward a benign strategy for the manufacturing of betulinic acid. Green Chem. 2017;19(4):1014–22. https://doi.org/10.1039/c6gc02641a.

    Article  CAS  Google Scholar 

  36. Csuk R, Schmuck K, Schäfer R. A practical synthesis of betulinic acid. Tetrahedron Lett. 2006;47(49):8769–70. https://doi.org/10.1016/j.tetlet.2006.10.004.

    Article  CAS  Google Scholar 

  37. Kumar D, Dubey KK. An efficient process for the transformation of betulin to betulinic acid by a strain of Bacillus megaterium. 3 Biotech. 2017;7(3):157. https://doi.org/10.1007/s13205-017-0759-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu JN, Niu YW, Bakur A, Li H, Chen QH. Cell-free production of pentacyclic triterpenoid compound betulinic acid from betulin by the engineered Saccharomyces cerevisiae. Molecules. 2017;22(7):1075. https://doi.org/10.3390/molecules22071075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Puder CH, Graef H, Thumerer MJ, Heitzmann M, Process for the extraction of betulinic acid [P]. US20070149490A1. 2007. June 28.

  40. Kim J, Baidoo EEK, Amer B, Mukhopadhyay A, Adams PD, Simmons BA, et al. Engineering Saccharomyces cerevisiae for isoprenol production. Metab Eng. 2021;64:154–66. https://doi.org/10.1016/j.ymben.2021.02.002.

    Article  CAS  PubMed  Google Scholar 

  41. Huang JJ, Zha WL, An TY, Dong H, Huang Y, Wang D, et al. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid. Appl Microbiol Biotechnol. 2019;103(17):7029–39. https://doi.org/10.1007/s00253-019-10004-z.

    Article  CAS  PubMed  Google Scholar 

  42. Yu Y, Rasool A, Liu HR, Lv B, Chang PC, Song H, et al. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool. Metab Eng. 2020;62:72–83. https://doi.org/10.1016/j.ymben.2020.08.010.

    Article  CAS  PubMed  Google Scholar 

  43. Gowers GOF, Chee SM, Bell D, Suckling L, Kern M, Tew D, et al. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening. Nat Commun. 2020;11(1):868. https://doi.org/10.1038/s41467-020-14708-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang D, Liu Y, Xu J-Y, Wang JH, Dai ZB, Zhang XL, et al. Construction of efficient yeast cell factories for production of ginsenosides precursor dammarenediol-II. Acta Pharm Sin B. 2018;53(8):1233–41. https://doi.org/10.16438/j.0513-4870.2018-0503.

    Article  Google Scholar 

  45. Mcgarvey DJ, Croteau R. Terpenoid metabolism. Plant Cell. 1995;7(7):1015–26. https://doi.org/10.1105/tpc.7.7.1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu ZT, Du MM, Gao B, Tao XY, Zhao M, Ren YH, et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction. Metab Eng. 2021;68:232–45. https://doi.org/10.1016/j.ymben.2021.10.011.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao YJ, Fan JJ, Wang C, Feng XD, Li C. Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae. Bioresour Technol. 2018;257:339–43. https://doi.org/10.1016/j.biortech.2018.02.096.

    Article  CAS  PubMed  Google Scholar 

  48. Abe I, Rohmer M, Prestwich GD. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev. 1993;93(6):2189–206. https://doi.org/10.1021/cr00022a009.

    Article  CAS  Google Scholar 

  49. Suzuki H, Fukushima EO, Umemoto N, Ohyama K, Seki H, Muranaka T. Comparative analysis of CYP716A subfamily enzymes for the heterologous production of C-28 oxidized triterpenoids in transgenic yeast. Plant Biotechnol. 2018;35(2):131–9. https://doi.org/10.5511/plantbiotechnology.18.0416a.

    Article  CAS  Google Scholar 

  50. Husselstein-Muller T, Schaller H, Benveniste P. Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol Biol. 2001;45:75–92. https://doi.org/10.1023/A:1006476123930.

    Article  CAS  PubMed  Google Scholar 

  51. Fukushima EO, Hikaru S, Kiyoshi O, Eiichiro O, Naoyuki U, Masaharu M, et al. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol. 2011;52(12):2050–61. https://doi.org/10.1093/pcp/pcr146.

    Article  CAS  PubMed  Google Scholar 

  52. Huang LL, Li J, Ye HC, Li CF, Wang H, Liu BY, et al. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Planta. 2012;236(5):1571–81. https://doi.org/10.1007/s00425-012-1712-0.

    Article  CAS  PubMed  Google Scholar 

  53. Sun J, Zhang CB, Nan WH, Li DS, Ke D, Lu WY. Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica. Chem Eng Sci. 2019;196:82–90. https://doi.org/10.1016/j.ces.2018.10.052.

    Article  CAS  Google Scholar 

  54. Li J, Zhang YS. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways. Appl Microbiol Biotechnol. 2014;98(7):3081–9. https://doi.org/10.1007/s00253-013-5461-1.

    Article  CAS  PubMed  Google Scholar 

  55. Jin CC, Zhang JL, Song H, Cao YX. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microb Cell Fact. 2019;18(1):77. https://doi.org/10.1186/s12934-019-1127-8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li J, Zhang Y. Modulating betulinic acid production in Saccharomyces cerevisiae by managing the intracellular supplies of the co-factor NADPH and oxygen. J Biosci Bioeng. 2015;119(1):77–81. https://doi.org/10.1016/j.jbiosc.2014.06.013.

    Article  CAS  PubMed  Google Scholar 

  57. Qiao WB, Zhou ZL, Liang Q, Mosongo I, Li CF, Zhang YS. Improving lupeol production in yeast by recruiting pathway genes from different organisms. Sci Rep. 2019;9:2992. https://doi.org/10.1038/s41598-019-39497-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou C, Li J, Li CF, Zhang YS. Improvement of betulinic acid biosynthesis in yeast employing multiple strategies. BMC Biotechnol. 2016;16(1):59. https://doi.org/10.1186/s12896-016-0290-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dai ZB, Liu Y, Zhang XN, Shi MY, Wang BB, Wang D, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng. 2013;20:146–56. https://doi.org/10.1016/j.ymben.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  60. Dai ZB, Wang BB, Liu Y, Shi MY, Wang D, Zhang XN, et al. Producing aglycons of ginsenosides in bakers’ yeast. Sci Rep. 2014;4:3698. https://doi.org/10.1038/srep03698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burg JS, Espenshade PJ. Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res. 2011;50(4):403–10. https://doi.org/10.1016/j.plipres.2011.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang Y-Y, Jian X-X, Lv Y-B, Nian K-Q, Gao Q, Chen J, et al. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism. J Biotechnol. 2018;281:106–14. https://doi.org/10.1016/j.jbiotec.2018.07.001.

    Article  CAS  PubMed  Google Scholar 

  63. Shi YS, Wang D, Li RS, Huang LQ, Dai ZB, Zhang XL. Engineering yeast subcellular compartments for increased production of the lipophilic natural products ginsenosides. Metab Eng. 2021;67:104–11. https://doi.org/10.1016/j.ymben.2021.06.002.

    Article  CAS  PubMed  Google Scholar 

  64. Vickers CE, Williams TC, Peng B, Cherry J. Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol. 2017;40:47–56. https://doi.org/10.1016/j.cbpa.2017.05.017.

    Article  CAS  PubMed  Google Scholar 

  65. Herrera JBR, Bartel B, Wilson WK, Matsuda SPT. Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene. Phytochemistry. 1998;49(7):1905–11. https://doi.org/10.1016/S0031-9422(98)00366-5.

    Article  CAS  PubMed  Google Scholar 

  66. Shibuya M, Zhang H, Endo A, Shishikura K, Kushiro T, Ebizuka Y. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur J Biochem. 1999;266(1):302–7. https://doi.org/10.1046/j.1432-1327.1999.00875.x.

    Article  CAS  PubMed  Google Scholar 

  67. Nguyen T-D, MacNevin G, Ro D-K. De novo synthesis of high-value plant sesquiterpenoids in yeast. Method Enzymol. 2012;517:261–78. https://doi.org/10.1016/B978-0-12-404634-4.00013-9.

    Article  CAS  Google Scholar 

  68. Kushiro T, Shibuya M, Ebizuka Y. Cryptic regiospecificity in deprotonation step of triterpene biosynthesis catalyzed by new members of lupeol synthase. Tetrahedron Lett. 1999;40(30):5553–6. https://doi.org/10.1016/S0040-4039(99)01035-7.

    Article  CAS  Google Scholar 

  69. Spanova M, Zweytick D, Lohner K, Klug L, Daum G. Influence of squalene on lipid particle/droplet and membrane organization in the yeast Saccharomyces cerevisiae. BBA-Mol Cell Biol L. 2012;1821(4):647–53.

    CAS  Google Scholar 

  70. Chen C, Song KN, Zhang YZ, Chu CJ, Fan BY, Song Y, et al. Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives. Phytochemistry. 2021;182: 112608. https://doi.org/10.1016/j.phytochem.2020.112608.

    Article  CAS  PubMed  Google Scholar 

  71. Chatzivasileiou AO, Ward V, Edgar SM, Stephanopoulos G. Two-step pathway for isoprenoid synthesis. Proc Natl Acad Sci USA. 2018;116(2):506–11. https://doi.org/10.1073/pnas.1812935116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dyga M, Keller A, Hasse H. Vapor–liquid equilibria and chemical equilibria in the system (formaldehyde + water + isoprenol). Ind Eng Chem Res. 2021;60(11):4471–83. https://doi.org/10.1021/acs.iecr.1c00168.

    Article  CAS  Google Scholar 

  73. Liu H, Chen SL, Xu JZ, Zhang WG. Dual regulation of cytoplasm and peroxisomes for improved α-farnesene production in recombinant Pichia pastoris. ACS Synth Biol. 2021;10(6):1563–73. https://doi.org/10.1021/acssynbio.1c00186.

    Article  CAS  PubMed  Google Scholar 

  74. Clomburg JM, Qian S, Tan ZG, Cheong S, Gonzalez R. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci USA. 2019;116(26):12810–5. https://doi.org/10.1073/pnas.1821004116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lund S, Hall R, Williams GJ. An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism. ACS Synth Biol. 2019;8(2):232–8. https://doi.org/10.1021/acssynbio.8b00383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ward VCA, Chatzivasileiou AO, Stephanopoulos G. Cell free biosynthesis of isoprenoids from isopentenol. Biotechnol Bioeng. 2019;116(12):3269–81. https://doi.org/10.1002/bit.27146.

    Article  CAS  PubMed  Google Scholar 

  77. Ma XQ, Liang H, Pan QC, Prather KLJ, Sinskey AJ, Stephanopoulos G, et al. Optimization of the isopentenol utilization pathway for isoprenoid synthesis in Escherichia coli. J Agric Food Chem. 2022;70(11):3512–20. https://doi.org/10.1021/acs.jafc.2c00014.

    Article  CAS  PubMed  Google Scholar 

  78. Luo ZB, Liu N, Lazar Z, Chatzivasileiou A, Ward V, Chen J, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab Eng. 2020;61:344–51. https://doi.org/10.1016/j.ymben.2020.07.010.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang XY, Zhu KX, Shi H, Wang X, Zhang Y, Wang F, et al. Engineering Escherichia coli for effective and economic production of cis-abienol by optimizing isopentenol utilization pathway. J Clean Prod. 2022;351: 131310. https://doi.org/10.1016/j.jclepro.2022.131310.

    Article  CAS  Google Scholar 

  80. Ruf A, Muller F, D’Arcy B, Stihle M, Kusznir E, Handschin C, et al. The monotopic membrane protein human oxidosqualene cyclase is active as monomer. Biochem Biophys Res Commun. 2004;315(2):247–54. https://doi.org/10.1016/j.bbrc.2004.01.052.

    Article  CAS  PubMed  Google Scholar 

  81. Thoma R, Schulz-Gasch T, D’Arcy B, Benz J, Aebi J, Dehmlow H, et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature. 2004;432(7013):118–22. https://doi.org/10.1038/nature02993.

    Article  CAS  PubMed  Google Scholar 

  82. Wu T, Ye LJ, Zhao DD, Li SW, Li QY, Zhang BL, et al. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 Biotech. 2018;8(6):269. https://doi.org/10.1007/s13205-018-1298-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arendt P, Miettinen K, Pollier J, De Rycke R, Callewaert N, Goossens A. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab Eng. 2017;40:165–75. https://doi.org/10.1016/j.ymben.2017.02.007.

    Article  CAS  PubMed  Google Scholar 

  84. Ma T, Shi B, Ye ZL, Li XW, Liu M, Chen Y, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng. 2019;52:134–42. https://doi.org/10.1016/j.ymben.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  85. Grewal PS, Samson JA, Baker JJ, Choi B, Dueber JE. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat Chem Biol. 2021;17(1):96–103. https://doi.org/10.1038/s41589-020-00668-4.

    Article  CAS  PubMed  Google Scholar 

  86. Dusseaux S, Wajn WT, Liu Y, Ignea C, Kampranis SC. Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc Natl Acad Sci USA. 2020;117(50):31789–99. https://doi.org/10.1073/pnas.2013968117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol. 2009;27(8):753–9. https://doi.org/10.1038/nbt.1557.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2018YFA0901700), the Natural Science Foundation of Jiangsu Province (BK20202002) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_1789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijian Rao.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yuan, Z. & Rao, Y. Current advances in the biotechnological synthesis of betulinic acid: new findings and practical applications. Syst Microbiol and Biomanuf 3, 179–192 (2023). https://doi.org/10.1007/s43393-022-00111-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00111-w

Keywords

Navigation