Skip to main content
Log in

Comparative transcriptomic and lipidomic analysis of oleic environment adaptation in Saccharomyces cerevisiae: insight into metabolic reprogramming and lipid membrane expansion

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

With staggering progress on genetic manipulation strategies, Saccharomyces cerevisiae is becoming an ideal cell factory for the de novo biosynthesis of lipid compounds. However, due to their hydrophobicity, lipids tend to be accumulated within intracellular spaces and cause a high burden on cell activity and induce product inhibition effect, which ultimately restricted the lipids biomanufacturing for industrial application. Herein, an oleic acid stress (OAS) model was applied for the long-time domestication of BY4741 cells, and a subclone of A-22 was obtained through a series of acclimation (0.1% glucose and 0.2% oleic acid), showing increased accumulation of both biomass and intracellular lipid droplets compared to WT. Comparative transcriptome analysis indicated that compared to fatty acid metabolism, most transcripts enriched in the pathways of glucose catabolism (glycolysis and citrate cycle) and lipid synthesis (phospholipid and sterol) were down-regulated under OAS. While interestingly, most the above transcripts tended to be ‘restored’ in adapted strain A-22. In addition, for physical adaptation, significant increase of phosphatidylcholines was identified by lipidomic analysis, which probably caused the subsequent subcellular expansion of peroxisomes and lipid droplets as observed in the adapted strain, since phosphatidylcholines are the major constituent of their membranes. The present study systematically investigated both the phenotype change and molecular mechanism on adaptation of S. cerevisiae towards oily environment. Detailed information on functional transcripts may provide novel rational modification targets to reinforce the hydrophobic lipids biosynthesis within S. cerevisiae engineered cell factory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta. 2011. https://doi.org/10.1016/j.bbalip.2011.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu JF, Xia JJ, Nie KL, Wang F, Deng L. Outline of the biosynthesis and regulation of ergosterol in yeast. World J Microbiol Biotechnol. 2019. https://doi.org/10.1007/s11274-019-2673-2.

    Article  PubMed  Google Scholar 

  3. Guo H, Wang H, Huo YX. Engineering critical enzymes and pathways for improved triterpenoid biosynthesis in yeast. ACS Synth Biol. 2020. https://doi.org/10.1021/acssynbio.0c00124.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hu Y, Zhu Z, Gradischnig D, Winkler M, Nielsen J, Siewers V. Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast. Proc Natl Acad Sci USA. 2020. https://doi.org/10.1073/pnas.2010521117.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lu R, Cao L, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce advanced biofuels: Current status and perspectives. Bioresour Technol. 2021. https://doi.org/10.1016/j.biortech.2021.125877.

    Article  PubMed  Google Scholar 

  6. Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv. 2021. https://doi.org/10.1016/j.biotechadv.2021.107695.

    Article  PubMed  Google Scholar 

  7. Zhu YL, Huang W, Ni JR, Liu W, Li H. Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation. Appl Microbiol Biotechnol. 2010. https://doi.org/10.1007/s00253-009-2200-8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ren Y, Chen Y, Hu B, Wu H, Lai F, Li X. Microwave-assisted extraction and a new determination method for total steroid saponins from Dioscorea zingiberensis C.H. Wright. Steroids. 2015. https://doi.org/10.1016/j.steroids.2015.09.008.

    Article  PubMed  Google Scholar 

  9. Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-09848-w.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bergenholm D, Gossing M, Wei Y, Siewers V, Nielsen J. Modulation of saturation and chain length of fatty acids in Saccharomyces cerevisiae for production of cocoa butter-like lipids. Biotechnol Bioeng. 2018. https://doi.org/10.1002/bit.26518.

    Article  PubMed  Google Scholar 

  11. Fernandez-Moya R, Da Silva NA. Engineering Saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products. FEMS Yeast Res. 2017. https://doi.org/10.1093/femsyr/fox071.

    Article  PubMed  Google Scholar 

  12. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011. https://doi.org/10.1007/s00253-011-3200-z.

    Article  PubMed  Google Scholar 

  13. Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 2014. https://doi.org/10.1111/1567-1364.12141.

    Article  PubMed  Google Scholar 

  14. Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014. https://doi.org/10.1016/j.ymben.2013.07.003.

    Article  PubMed  Google Scholar 

  15. Ma T, Shi B, Ye Z, Li X, Liu M, Chen Y, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng. 2019. https://doi.org/10.1016/j.ymben.2018.11.009.

    Article  PubMed  Google Scholar 

  16. Wu T, Li S, Ye L, Zhao D, Fan F, Li Q, et al. Engineering an artificial membrane vesicle trafficking system (AMVTS) for the excretion of beta-carotene in Escherichia coli. ACS Synth Biol. 2019. https://doi.org/10.1021/acssynbio.8b00472.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lindahl AL, Olsson ME, Mercke P, Tollbom O, Schelin J, Brodelius M, et al. Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae. Biotechnol Lett. 2006. https://doi.org/10.1007/s10529-006-0015-6.

    Article  PubMed  Google Scholar 

  18. Dejong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, et al. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng. 2006. https://doi.org/10.1002/bit.20694.

    Article  PubMed  Google Scholar 

  19. Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, et al. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng. 2012. https://doi.org/10.1016/j.ymben.2012.01.007.

    Article  PubMed  Google Scholar 

  20. Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng. 2013. https://doi.org/10.1016/j.ymben.2013.10.004.

    Article  PubMed  Google Scholar 

  21. Liu J, Zhang W, Du G, Chen J, Zhou J. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol. 2013. https://doi.org/10.1016/j.jbiotec.2013.10.017.

    Article  PubMed  Google Scholar 

  22. Jacquier N, Schneiter R. Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem Mol Biol. 2012. https://doi.org/10.1016/j.jsbmb.2010.11.014.

    Article  PubMed  Google Scholar 

  23. Espenshade PJ, Hughes AL. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet. 2007. https://doi.org/10.1146/annurev.genet.41.110306.130315.

    Article  PubMed  Google Scholar 

  24. Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: a contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017. https://doi.org/10.1016/j.bbalip.2017.09.002.

    Article  PubMed  Google Scholar 

  25. Zhao Y, Zhang Y, Nielsen J, Liu Z. Production of beta-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol Bioeng. 2021. https://doi.org/10.1002/bit.27717.

    Article  PubMed  Google Scholar 

  26. Qian YD, Tan SY, Dong GR, Niu YJ, Hu CY, Meng YH. Increased campesterol synthesis by improving lipid content in engineered Yarrowia lipolytica. Appl Microbiol Biotechnol. 2020. https://doi.org/10.1007/s00253-020-10743-4.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian J Microbiol. 2017. https://doi.org/10.1007/s12088-017-0657-1.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019. https://doi.org/10.1038/s41580-018-0085-z.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng H, He L, Haritos VS. Metabolic engineering of lipid pathways in Saccharomyces cerevisiae and staged bioprocess for enhanced lipid production and cellular physiology. J Ind Microbiol Biotechnol. 2018. https://doi.org/10.1007/s10295-018-2046-0.

    Article  PubMed  Google Scholar 

  30. Teixeira PG, David F, Siewers V, Nielsen J. Engineering lipid droplet assembly mechanisms for improved triacylglycerol accumulation in Saccharomyces cerevisiae. FEMS Yeast Res. 2018. https://doi.org/10.1093/femsyr/foy060.

    Article  PubMed  Google Scholar 

  31. Son SH, Kim JE, Oh SS, Lee JY. Engineering cell wall integrity enables enhanced squalene production in yeast. J Agric Food Chem. 2020. https://doi.org/10.1021/acs.jafc.0c00967.

    Article  PubMed  Google Scholar 

  32. Demessie Z, Woolfson KN, Yu F, Qu Y, De Luca V. The ATP binding cassette transporter, VmTPT2/VmABCG1, is involved in export of the monoterpenoid indole alkaloid, vincamine in Vinca minor leaves. Phytochemistry. 2017. https://doi.org/10.1016/j.phytochem.2017.04.019.

    Article  PubMed  Google Scholar 

  33. Rattray JB, Schibeci A, Kidby DK. Lipids of yeasts. Bacteriol Rev. 1975. https://doi.org/10.1128/br.39.3.197-231.1975.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gurvitz A, Rottensteiner H. The biochemistry of oleate induction: transcriptional upregulation and peroxisome proliferation. Biochim Biophys Acta. 2006. https://doi.org/10.1016/j.bbamcr.2006.07.011.

    Article  PubMed  Google Scholar 

  35. Grillitsch K, Connerth M, Kofeler H, Arrey TN, Rietschel B, Wagner B, et al. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome. Biochim Biophys Acta. 2011. https://doi.org/10.1016/j.bbalip.2011.07.015.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li P, Fu X, Chen M, Zhang L, Li S. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation. Biotechnol Biofuels. 2019. https://doi.org/10.1186/s13068-019-1390-2.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yan GL, Duan LL, Liu PT, Duan CQ. Transcriptional comparison investigating the influence of the addition of unsaturated fatty acids on aroma compounds during alcoholic fermentation. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.01115.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Petschnigg J, Wolinski H, Kolb D, Zellnig G, Kurat CF, Natter K, et al. Good fat, essential cellular requirements for triacylglycerol synthesis to maintain membrane homeostasis in yeast. J Biol Chem. 2009. https://doi.org/10.1074/jbc.M109.024752.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sun J, Yan J, Yuan X, Yang R, Dan T, Wang X, et al. A computationally constructed ceRNA interaction network based on a comparison of the SHEE and SHEEC cell lines. Cell Mol Biol Lett. 2016. https://doi.org/10.1186/s11658-016-0022-0.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Fang J, Qi X, Lin M, Zhong Y, Sun L, et al. Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19051471.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohdate T, Inoue Y. Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium. Biochim Biophys Acta. 2012. https://doi.org/10.1016/j.bbalip.2012.05.004.

    Article  PubMed  Google Scholar 

  42. Thoms S, Erdmann R. Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J. 2005. https://doi.org/10.1111/j.1742-4658.2005.04939.x.

    Article  PubMed  Google Scholar 

  43. Airenne TT, Torkko JM, Van den plas S, Sormunen RT, Kastaniotis AJ, Wierenga RK, et al. Structure–function analysis of enoyl thioester reductase involved in mitochondrial maintenance. J Mol Biol. 2003. https://doi.org/10.1016/s0022-2836(03)00038-x.

    Article  PubMed  Google Scholar 

  44. Meyers A, Weiskittel TM, Dalhaimer P. Lipid droplets: formation to breakdown. Lipids. 2017. https://doi.org/10.1007/s11745-017-4263-0.

    Article  PubMed  Google Scholar 

  45. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem. 2002. https://doi.org/10.1074/jbc.M207712200.

    Article  PubMed  Google Scholar 

  46. Fujimoto T, Parton RG. Not just fat: the structure and function of the lipid droplet. Cold Spring Harb Perspect Biol. 2011. https://doi.org/10.1101/cshperspect.a004838.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Renne MF, Klug YA, Carvalho P. Lipid droplet biogenesis: a mystery “unmixing”? Semin Cell Dev Biol. 2020. https://doi.org/10.1016/j.semcdb.2020.03.001.

    Article  PubMed  Google Scholar 

  48. Wang CW, Miao YH, Chang YS. Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16. J Cell Sci. 2014. https://doi.org/10.1242/jcs.137737.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thiam AR, Ikonen E. Lipid droplet nucleation. Trends Cell Biol. 2021. https://doi.org/10.1016/j.tcb.2020.11.006.

    Article  PubMed  Google Scholar 

  50. Choudhary V, Ojha N, Golden A, Prinz WA. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol. 2015. https://doi.org/10.1083/jcb.201505067.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thiam AR, Foret L. The physics of lipid droplet nucleation, growth and budding. Biochim Biophys Acta. 2016. https://doi.org/10.1016/j.bbalip.2016.04.018.

    Article  PubMed  Google Scholar 

  52. Thiam AR, Beller M. The why, when and how of lipid droplet diversity. J Cell Sci. 2017. https://doi.org/10.1242/jcs.192021.

    Article  PubMed  Google Scholar 

  53. Eisenberg-Bord M, Mari M, Weill U, Rosenfeld-Gur E, Moldavski O, Castro IG, et al. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201704122.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Teixeira V, Johnsen L, Martinez-Montanes F, Grippa A, Buxo L, Idrissi FZ, et al. Regulation of lipid droplets by metabolically controlled Ldo isoforms. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201704115.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moir RD, Gross DA, Silver DL, Willis IM. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet. 2012. https://doi.org/10.1371/journal.pgen.1002890.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Becuwe M, Bond LM, Pinto AFM, Boland S, Mejhert N, Elliott SD, et al. FIT2 is an acyl-coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis. J Cell Biol. 2020. https://doi.org/10.1083/jcb.202006111.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci. 2011. https://doi.org/10.1242/jcs.076836.

    Article  PubMed  Google Scholar 

  58. Siddiqah IM, Manandhar SP, Cocca SM, Hsueh T, Cervantes V, Gharakhanian E. Yeast ENV9 encodes a conserved lipid droplet (LD) short-chain dehydrogenase involved in LD morphology. Curr Genet. 2017. https://doi.org/10.1007/s00294-017-0702-y.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ouyang Y, Li Q, Kuang X, Wang H, Wu J, Ayepa E, et al. YMR152W from Saccharomyces cerevisiae encoding a novel aldehyde reductase for detoxification of aldehydes derived from lignocellulosic biomass. J Biosci Bioeng. 2021. https://doi.org/10.1016/j.jbiosc.2020.09.004.

    Article  PubMed  Google Scholar 

  60. Narita T, Naganuma T, Sase Y, Kihara A. Long-chain bases of sphingolipids are transported into cells via the acyl-CoA synthetases. Sci Rep. 2016. https://doi.org/10.1038/srep25469.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schuldiner M, Bohnert M. A different kind of love—lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lipids. 2017. https://doi.org/10.1016/j.bbalip.2017.06.005.

    Article  PubMed  Google Scholar 

  62. Walther TC, Chung J, Farese RV Jr. Lipid droplet biogenesis. Annu Rev Cell Dev Biol. 2017. https://doi.org/10.1146/annurev-cellbio-100616-060608.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Henne M, Goodman JM, Hariri H. Spatial compartmentalization of lipid droplet biogenesis. Biochim Biophys Acta Mol Cell Biol Lipids. 2020. https://doi.org/10.1016/j.bbalip.2019.07.008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Project of China (2019YFA0905300).

Author information

Authors and Affiliations

Authors

Contributions

YS: investigation, methodology, data curation, formal analysis, original draft and writing. XK: data curation, formal analysis, writing—review and editing. Z-HP: data curation, methodology and writing. L-SC: methodology, investigation. Z-QL: conceptualization, funding acquisition, resources, project administration, supervision. Y-GZ: funding acquisition, supervision.

Corresponding author

Correspondence to Zhi-Qiang Liu.

Ethics declarations

Conflict of interest

Authors are required to disclose financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Consent for publication

All authors agree to publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8171 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Ke, X., Pan, ZH. et al. Comparative transcriptomic and lipidomic analysis of oleic environment adaptation in Saccharomyces cerevisiae: insight into metabolic reprogramming and lipid membrane expansion. Syst Microbiol and Biomanuf 4, 112–126 (2024). https://doi.org/10.1007/s43393-022-00098-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00098-4

Keywords

Navigation