Skip to main content

Advertisement

Log in

Food-grade expression of multicopper oxidase with improved capability in degrading biogenic amines

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Biogenic amines (BAs) are potential amine hazards that are detected in fermented foods and alcoholic beverages. Excessive intake of BAs may lead to allergic symptoms such as difficulty in breathing, nausea, and vomiting. Degradation of BAs by multicopper oxidase (MCO) is a promising method as it has little effect on the fermentation process, food nutrition, and flavor. However, the application of MCO in food industry was restricted due to its poor catalytic properties and low productivity. In this work, food-grade expression of the Bacillus amyloliquefaciens MCO (MCOB) and its three mutants were successfully constructed in Lactococcus lactis NZ3900. The expression level of MCOB in L. lactis NZ3900 was dramatically enhanced by optimizing the cultivation conditions, and the highest expression level reached 4488.1 U/L. This was the highest expression level of food-graded MCO reported so far, to our knowledge. Interestingly, the optimal reaction pH of MCOB expressed in L. lactis NZ3900 switched to 4.5, it would be more suitable for degrading BAs in food as the pH value of most fermented foods was found to be 4.5. Moreover, MCOB expressed in L. lactis NZ3900 was quite stable (with more than 80% residual activity) in the pH range of 4.0–5.5, the catalytic rate constant (kcat) and specific activity of MCOBLS were all dramatically increased compared with that of MCOB expressed in Escherichia coli. Using histamine as the substrate, the degradation of BAs within 24 h by MCOB expressed in L. lactis NZ3900 was 69.7% higher than that expressed in E. coli. The results demonstrated the potential applications of MCOB in food industry for reduction of biogenic amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sivamaruthi BS, Kesika P, Chaiyasut C. A narrative review on biogenic amines in fermented fish and meat products. J Food Sci Technol. 2021;58(5):1623–39. https://doi.org/10.1007/s13197-020-04686-x.

    Article  CAS  PubMed  Google Scholar 

  2. Swider O, Roszko ML, Wojcicki M, Szymczyk K. Biogenic amines and free amino acids in traditional fermented vegetables-dietary risk evaluation. J Agric Food Chem. 2020;68(3):856–68. https://doi.org/10.1021/acs.jafc.9b05625.

    Article  CAS  PubMed  Google Scholar 

  3. Gardini F, Ozogul Y, Suzzi G, Tabanelli G, Ozogul F. Technological factors affecting biogenic amine content in foods: a review. Front Microbiol. 2016;7:1218–36. https://doi.org/10.3389/fmicb.2016.01218.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Latorre-Moratalla ML, Bover-Cid S, Bosch-Fuste J, Veciana-Nogues MT, Vidal-Carou MC. Amino acid availability as an influential factor on the biogenic amine formation in dry fermented sausages. Food Control. 2014;36(1):76–81. https://doi.org/10.1016/j.foodcont.2013.07.038.

    Article  CAS  Google Scholar 

  5. Doeun D, Davaatseren M, Chung MS. Biogenic amines in foods. Food Sci Biotechnol. 2017;26(6):1463–74. https://doi.org/10.1007/s10068-017-0239-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feddern V, Mazzuco H, Fonseca FN, de Lima GJMM. A review on biogenic amines in food and feed: toxicological aspects, impact on health and control measures. Anim Prod Sci. 2019;59(4):608–18. https://doi.org/10.1071/An18076.

    Article  Google Scholar 

  7. Alvarez MA, Moreno-Arribas MV. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci Technol. 2014;39(2):146–55. https://doi.org/10.1016/j.tifs.2014.07.007.

    Article  CAS  Google Scholar 

  8. Colombo FM, Cattaneo P, Confalonieri E, Bernardi C. Histamine food poisonings: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2018;58(7):1131–51. https://doi.org/10.1080/10408398.2016.1242476.

    Article  CAS  PubMed  Google Scholar 

  9. United States Department of Health and Human Services. Fish and fishery products hazards and controls guidance[EB/OL]. 2021. http://www.fda.gov/Food Guidances.

  10. European Food Safety Authority. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011;9(10):2393–486. https://doi.org/10.2903/j.efsa.2011.2393.

    Article  CAS  Google Scholar 

  11. European Communities Committee. Microbiological criteria for foodstuffs: 2073/2005/EC[S]. Brussels Off J Eur Union. 2005;2005:12–29.

    Google Scholar 

  12. Ruiz-Capillas C, Herrero AM. Impact of biogenic amines on food quality and safety. Foods. 2019;8(2):62–74. https://doi.org/10.3390/foods8020062.

    Article  CAS  PubMed Central  Google Scholar 

  13. Li J, Zhou LN, Feng W, Cheng H, Muhammad AI, Ye XQ, et al. Comparison of biogenic amines in Chinese commercial soy sauces. Molecules. 2019;24(8):1522–32. https://doi.org/10.3390/molecules24081522.

    Article  CAS  PubMed Central  Google Scholar 

  14. Jiang W, Xu Y, Li CS, Dong XY, Wang DF. Biogenic amines in commercially produced Yulu, a Chinese fermented fish sauce. Food Addit Contam Part B Surveill. 2014;7(1):25–9. https://doi.org/10.1080/19393210.2013.831488.

    Article  CAS  PubMed  Google Scholar 

  15. Mah JH, Park YK, Jin YH, Lee JH, Hwang HJ. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods. 2019;8(2):85–100. https://doi.org/10.3390/foods8020085.

    Article  CAS  PubMed Central  Google Scholar 

  16. Alvarez MA, Moreno-Arribas MV. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci Technol. 2014;39:146–55. https://doi.org/10.1016/j.tifs.2014.07.007.

    Article  CAS  Google Scholar 

  17. Latorre-Moratalla ML, Bover-Cid S, Aymerich T, Marcos B, Vidal-Carou MC, Garriga M. Aminogenesis control in fermented sausages manufactured with pressurized meat batter and starter culture. Meat Sci. 2007;75(3):460–9. https://doi.org/10.1016/j.meatsci.2006.07.020.

    Article  CAS  PubMed  Google Scholar 

  18. Raj T, Chandrasekhar K, Kumar AN, Kim SH. Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. Syst Microbiol Biomanuf. 2021. https://doi.org/10.1007/s43393-021-00044-w.

    Article  Google Scholar 

  19. Guarcello R, De Angelis M, Settanni L, Formiglio S, Gaglio R, Minervini F, et al. Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines. Appl Environ Microbiol. 2016;82(23):6870–80. https://doi.org/10.1128/AEM.01051-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pang CP, Yin XX, Zhang GQ, Liu S, Zhou JW, Li JH, et al. Current progress and prospects of enzyme technologies in future foods. Syst Microbiol Biomanuf. 2021;1(1):24–32. https://doi.org/10.1007/s43393-020-00008-6.

    Article  Google Scholar 

  21. Lee JI, Kim YW. Characterization of amine oxidases from Arthrobacter aurescens and application for determination of biogenic amines. World J Microbiol Biotechnol. 2013;29(4):673–82. https://doi.org/10.1007/s11274-012-1223-y.

    Article  CAS  PubMed  Google Scholar 

  22. Samasil K, Lopes de Carvalho L, Mäenpää P, Salminen TA, Incharoensakdi A. Biochemical characterization and homology modeling of polyamine oxidase from cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol Biochem. 2017;119:159–69. https://doi.org/10.1016/j.plaphy.2017.08.018.

    Article  CAS  PubMed  Google Scholar 

  23. García-Ruiz A, González-Rompinelli EM, Bartolomé B, Moreno-Arribas MV. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int J Food Microbiol. 2011;148(2):115–20. https://doi.org/10.1016/j.ijfoodmicro.

    Article  PubMed  Google Scholar 

  24. Kondo T, Kondo E, Maki H, Yasumoto K, Takagi K, Kano K, et al. Purification and characterization of aromatic amine dehydrogenase from Alcaligenes xylosoxidans. Biosci Biotechnol Biochem. 2004;68(9):1921–8. https://doi.org/10.1271/bbb.68.1921.

    Article  CAS  PubMed  Google Scholar 

  25. Komori H, Higuchi Y. Structural insights into the O2 reduction mechanism of multicopper oxidase. J Biochem. 2015;158(4):293–8. https://doi.org/10.1093/jb/mvv079.

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Wen XX, Wen ZY, Chen SW, Wang L, Wei XT. Evaluation of the biogenic amines formation and degradation abilities of Lactobacillus curvatus from Chinese bacon. Front Microbiol. 2018;9:1015–24. https://doi.org/10.3389/fmicb.2018.01015.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pištěková H, Jančová P, Berčíková L, Buňka F, Sokolová I, Šopík T, Maršálková K, Amaral OMRP, Buňková L. Application of qPCR for multicopper oxidase gene (MCO) in biogenic amines degradation by Lactobacillus casei. Food Microbiol. 2020;91:103550–8. https://doi.org/10.1016/j.fm.2020.103550.

    Article  CAS  PubMed  Google Scholar 

  28. Olmeda I, Casino P, Collins RE, Sendra R, Callejón S, Huesa J, et al. Structural analysis and biochemical properties of laccase enzymes from two Pediococcus species. Microb Biotechnol. 2021;1(1):1–18. https://doi.org/10.1111/1751-7915.13751.

    Article  CAS  Google Scholar 

  29. Callejón S, Sendra R, Ferrer S, Pardo I. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine. Appl Microbiol Biotechnol. 2014;98(1):185–98. https://doi.org/10.1007/s00253-013-4829-6.

    Article  CAS  PubMed  Google Scholar 

  30. Xu J, Fang F. Expression and characterization of a multicopper oxidase from Lactobacillus fermentum. Chin J Biotech. 2019;35(7):1286–94. https://doi.org/10.13345/j.cjb.180531.

    Article  Google Scholar 

  31. Callejón S, Sendra R, Ferrer S, Pardo I. Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine. PLoS ONE. 2017;12(10): e0186019. https://doi.org/10.1371/journal.pone.0186019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Callejón S, Sendra R, Ferrer S, Pardo I. Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation. Appl Microbiol Biotechnol. 2016;100(7):3113–24. https://doi.org/10.1007/s00253-015-7158-0.

    Article  CAS  PubMed  Google Scholar 

  33. Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, et al. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol. 2017;101(15):6261–76. https://doi.org/10.1007/s00253-017-8345-y.

    Article  CAS  PubMed  Google Scholar 

  34. Panwar V, Sheikh JN, Dutta T. Sustainable denim bleaching by a novel thermostable bacterial laccase. Appl Biochem Biotechnol. 2020;192(4):1238–54. https://doi.org/10.1007/s12010-020-03390-y.

    Article  CAS  PubMed  Google Scholar 

  35. Fang, F, Yang T, Zhou JW, Chen J, Du GC, Xu, J. Multicopper oxidase mutant with improved salt tolerance. US 16/524,382.

  36. Xu J. Characterization and heterologous expression of multicopper oxidases for degradation of biogenic amines. Wuxi: Jiangnan University; 2019.

    Google Scholar 

  37. Yang T, Chen J, Fang F. Secretory expression of a multicopper oxidase in Escherichia coli. Chin J Process Eng. 2020;20(10):1210–7. https://doi.org/10.12034/j.issn.1009-606X.219370.

    Article  CAS  Google Scholar 

  38. Wells E, Robinson AS. Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnol J. 2017;12(1):1600105–67. https://doi.org/10.1002/biot.201600105.

    Article  CAS  Google Scholar 

  39. Wilding KM, Hunt JP, Wilkerson JW, Funk PJ, Swensen RL, Carver WC, et al. Endotoxin-free E. coli-based cell-free protein synthesis: pre-expression endotoxin removal approaches for on-demand cancer therapeutic production. Biotechnol J. 2019;14(3):e1800271. https://doi.org/10.1002/biot.201800271.

    Article  CAS  PubMed  Google Scholar 

  40. Duarte SOD, Monteiro GA. Plasmid replicons for the production of pharmaceutical-grade pDNA, proteins and antigens by Lactococcus lactis cell factories. Int J Mol Sci. 2021;22(3):1379–409. https://doi.org/10.3390/ijms22031379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song AA, In LLA, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb Cell Fact. 2017;16(1):55–70. https://doi.org/10.1186/s12934-017-0669-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang L, Jin Q, Luo J, Wu JH, Wang SY, Wang ZW, et al. Intracellular expression of antifreeze peptides in food grade Lactococcus lactis and evaluation of their cryoprotective activity. J Food Sci. 2018;83(5):1311–20. https://doi.org/10.1111/1750-3841.14117.

    Article  CAS  PubMed  Google Scholar 

  43. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5. https://doi.org/10.1038/Nmeth.1318.

    Article  CAS  PubMed  Google Scholar 

  44. Yang S, Long Y, Yan H, Cai HW, Li YD, Wang XG. Gene cloning, identification, and characterization of the multicopper oxidase CumA from Pseudomonas sp. 593. Biotechnol Appl Biochem. 2017;64(3):347–55. https://doi.org/10.1002/bab.1501.

    Article  CAS  PubMed  Google Scholar 

  45. Dong WH, Wang F, Zhang JH, Zhou YS, Zhang LY, Wang TY. A simple, time-saving dye staining of proteins in sodium dodecyl sulfate-polyacrylamide gel using coomassie blue. Methods Mol Biol. 2018;1853:31–5. https://doi.org/10.1007/978-1-4939-8745-0_5.

    Article  CAS  PubMed  Google Scholar 

  46. Langmuir I. The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361–403. https://doi.org/10.1021/ja02242a004.

    Article  CAS  Google Scholar 

  47. Kim B, Byun BY, Mah JH. Biogenic amine formation and bacterial contribution in Natto products. Food Chem. 2012;135(3):2005–11. https://doi.org/10.1016/j.foodchem.2012.06.091.

    Article  CAS  PubMed  Google Scholar 

  48. Li ZJ, Wu YN, Zhang G, Zhao YF, Xue CH. A survey of biogenic amines in Chinese red wines. Food Chem. 2007;105(4):1530–5. https://doi.org/10.1016/j.foodchem.2007.05.015.

    Article  CAS  Google Scholar 

  49. Chen Y, Luo Q, Zhou W, Xie Z, Cai YJ, Liao XR, et al. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis. Appl Microbiol Biotechnol. 2017;101(5):1935–44. https://doi.org/10.1007/s00253-016-7962-1.

    Article  CAS  PubMed  Google Scholar 

  50. Wang HQ, Liu XQ, Zhao JT, Yue QX, Yan YH, Gao ZQ, et al. Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Sci Rep. 2018;8(1):14252–64. https://doi.org/10.1038/s41598-018-32446-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang YQ, Kang Z, Zhou JL, Chen J, Du GC. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol. 2015;99(1):301–8. https://doi.org/10.1007/s00253-014-5916-z.

    Article  CAS  PubMed  Google Scholar 

  52. Yang T. Improving the application characteristics of multicopper oxidase through molecular modification. Wuxi: Jiangnan University; 2020.

    Google Scholar 

  53. Morii H, Kasama K, Herrera-Espinoza R. Cloning and sequencing of the histidine decarboxylase gene from Photobacterium phosphoreum and its functional expression in Escherichia coli. J Food Prot. 2006;69(8):1768–76. https://doi.org/10.4315/0362-028x-69.8.1768.

    Article  CAS  PubMed  Google Scholar 

  54. Shukla S, Kim M. Determination of biogenic amines and total aflatoxins: quality index of starter culture soy sauce samples. Food Sci Biotechnol. 2016;25(4):1221–4. https://doi.org/10.1007/s10068-016-0194-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang LJ, Zhang L, Xu Y. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation. J Sci Food Agric. 2020;100(6):2782–90. https://doi.org/10.1002/jsfa.10310.

    Article  CAS  PubMed  Google Scholar 

  56. Linares DM, del Rio B, Redruello B, Ladero V, Martin MC, Fernandez M, et al. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 2016;197:658–63. https://doi.org/10.1016/j.foodchem.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  57. Olmeda I, Casino P, Collins RE, Sendra R, Callejón S, Huesa J, Soares AS, Ferrer S, Pardo I. Structural analysis and biochemical properties of laccase enzymes from two Pediococcus species. Microb Biotechnol. 2021;14(3):1026–43. https://doi.org/10.1111/1751-7915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu KZ, Ma H, Wang YJ, Cai YJ, Liao XR, Guan ZB. Extracellular expression of mutant CotA-laccase SF in Escherichia coli and its degradation of malachite green. Ecotoxicol Environ Saf. 2020;193:110335–46. https://doi.org/10.1016/j.ecoenv.

    Article  CAS  PubMed  Google Scholar 

  59. Mollania N, Khajeh K, Ranjbar B, Hosseinkhani S. Enhancement of a bacterial laccase thermostability through directed mutagenesis of a surface loop. Enzyme Microb Technol. 2011;49(5):446–52. https://doi.org/10.1016/j.enzmictec.2011.08.001.

    Article  CAS  PubMed  Google Scholar 

  60. Razali NN, Hashim NH, Leow ATC, Salleh AB. Conformational design and characterisation of a truncated diamine oxidase from Arthrobacter globiformis. High Throughput. 2018;7(3):21–37. https://doi.org/10.3390/ht7030021.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFC1600405) and National Natural Science Foundation of China (31771955).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Fang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Chen, J., Du, G. et al. Food-grade expression of multicopper oxidase with improved capability in degrading biogenic amines. Syst Microbiol and Biomanuf 2, 285–295 (2022). https://doi.org/10.1007/s43393-021-00061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00061-9

Keywords

Navigation